Effective: June 2020 Supercedes:

GS100 User Manual

J1939 CAN Speed Sensor

ENGINEERING YOUR SUCCESS.

Parker Hannifin Electronic Controls Division 850 Arthur Ave Elk Grove Village, IL 60007 USA Phone:+1 800 221 9257 Fax: +1 847 258 6299

Copyright 2020 © **Parker Hannifin Corporation.** All rights reserved. No part of this work may be reproduced, published, or distributed in any form or by any means (electronically, mechanically, photocopying, recording, or otherwise), or stored in a database retrieval system, without the prior written permission of Parker Hannifin Corporation in each instance.

A Warning!

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN, OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the "Offer of Sale" elsewhere in this document, or available at www.parker.com.

Publication History

The following table provides an overview of the changes made to this document over the course of its publication history

Revision	Description of Change
Rev. 001	First release of this document

Table of Contents

Public	cation History	ii
Table	of Figures	iv
Table	of Tables	iv
1 Sa	Safety	5
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Safety Symbols General Safety Regulations Welding After Installation Construction Regulations Safety During Installation Safety During Start-Up Safety During Maintenance and Fault Diagnosis	5 5 6 6 6 6 6 6
2 D	Document Introduction	7
2.1 2.2	Scope Terminology	7 7
3 Pi	Product Information	
3.1 3.2	Overview Features and Benefits	8
4 S	Sensor Specifications	9
4.1 4.2 4.3 4.4	Operating Characteristics Product Features Product Dimensions Connector Pinout	
5 Pi	Product Usage	12
5.1 5.2	Functional Block Diagram Address Resistor Selection Guide	
6 In	nstallation Guidelines	14
6.1 6.2 6.3 6.4	Operating Conditions Power Supply Requirements Mating Connection Mounting Guideline	
7 C	CAN Information	
7.1 7.2 7.3 7.4 7.5 7.6	SAE J1939 Network Compatibility Identifier Description Data field structure Communication Message Types Adjustable User Parameters.	
7.7 7 9	Transmitted Messages	
7.9	Sensor Configuration Messages	

8 App	lication Examples/How Do I	
8.1	Read/Write Sensor's Message Rate	
8.2	Read/Write Example for Sensor's Moving Average Filter Sample Size	
8.3	Read/Write Example for Sensor's Broadcast Status Message PGN	
8.4	Read/Write Example for Sensor's CAN Baud Rate	
8.5	Configuring Source Address using CAN Command	
9 FAC	۵	

Table of Figures

Figure 4.3.1 GS100 Dimensions	. 11	1
Figure 4.4.1 GS100 Pin Position (DTM04-6P)	. 11	1
Figure 5.1.1 GS100 Functional Block Diagram	. 12	2

Table of Tables

Table 2.2:1 Abbreviation List	7
Table 4.4:1 GS100 Pinout	11
Table 5.2:1 Resistor Source Address Selector	13
Table 5.10:1 J1939 CAN Identifier Structure	16
Table 5.11:1 Data Field Structure	17

1 Safety

Do not perform the procedures in this manual unless you are experienced in the handling of electronic equipment.

Contact the manufacturer if there is anything you are not sure about or if you have any questions regarding the product and its handling or maintenance.

The term "manufacturer" refers to Parker Hannifin Corporation.

1.1 Safety Symbols

The following symbols are used in this document to indicate potentially hazardous situations. When you see these symbols, follow the instructions carefully and proceed with caution.

- 2 Danger! Risk of death or injury.
- A Warning! Risk of damage to equipment or degradation of signal.

1.2 General Safety Regulations

Work on the hydraulics control electronics may only be carried out by trained personnel who are well-acquainted with the control system, the machine, and its safety regulations.

- Follow the manufacturer's regulations when mounting, modifying, repairing, and maintaining equipment. The manufacturer assumes no responsibility for any accidents caused by incorrectly mounted or incorrectly maintained equipment. The manufacturer assumes no responsibility for the system being incorrectly applied, or the system being programmed in a manner that jeopardizes safety.
- Do not use the product if electronic modules, cabling, or connectors are damaged or if the control system shows error functions.
- Electronic control systems in an inappropriate installation and in combination with strong electromagnetic interference fields can, in extreme cases, cause an unintentional change of speed of the output function
- This product can expose you to chemicals including ANTIMONY TRIOXIDE,CARBON BLACK (AIRBORNE, UNBOUND PARTICLES OF RESPIRABLE SIZE) which is known to the State of California to cause cancer and 4,4'-(PROPANE-2,2-DIYL)DIPHENOL, BPA, P,P'-ISOPROPYLIDENEBISPHENOL, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

1.3 Welding After Installation

If welding is required for installation, complete as much as possible of the welding work before the installation of the system. If welding must be done afterwards, proceed as follows:

1 Do not place the welding unit cables near the electrical wires of the control system

1 If sensor has been installed and additional welding is required, remove the 6-pin connector from the sensor to avoid possible electrical damage to sensor

- 1. Disconnect the electrical connections between the system and external equipment
- 2. Disconnect the negative cable from the battery
- 3. Disconnect the positive cable from the battery
- 4. Connect the welder's ground wire as close as possible to the place of the welding

1.4 Construction Regulations

The vehicle must be equipped with an emergency stop which disconnects the supply voltage to the control system's electrical units. The emergency stop must be easily accessible to the operator. If possible, the machine must be built so that the supply voltage to the control system's electrical units is disconnected when the operator leaves the operator's station.

1.5 Safety During Installation

Incorrectly positioned or mounted cabling can be influenced by radio signals, which can interfere with the functions of the system.

1.6 Safety During Start-Up

Onger! Risk of death or injury. Do not start the machine's engine before the control system is mounted and its electrical functions have been verified.

Do not start the machine if anyone is near the machine.

1.7 Safety During Maintenance and Fault Diagnosis

Before performing any work on the hydraulics control electronics, ensure that:

- 1 The machine cannot start moving
- Functions are positioned safely
- 1 The machine is turned off
- 1 The hydraulic system is relieved from any pressure
- Supply voltage to the control electronics is disconnected

2 Document Introduction

2.1 Scope

The purpose of this document is to detail performance characteristics, installation recommendations, and define CAN messages for the GS100 Sensor product. These Instructions/guidelines are to be used as a reference tool for the manufacturer's design, production, and service personnel. The user of this manual should have basic knowledge in the handling of electronic equipment.

2.2 Terminology

The abbreviations and acronyms used in this manual are defined in the following table.

Abbreviation	Explanation
GS100	Gear Speed 100 series: J1939 CAN Speed Sensor
CAN	Controller Area Network
EMI	Electromagnetic Interference
PGN	Parameter Group Number
JTAG	Joint (European) Test Access Group- type of a
	connector
SAE	Society of Automotive Engineers
SA	Source Address
DA	Destination Address
PGN	Parameter Group Number
CI	Component Identification
SOFT	Software Identification
AC	Address Claim
FMI	Failure More Indicator
SPN	Suspect Parameter Number
CA	Commanded Address

Table 2.2:1 Abbreviation List

3 Product Information

3.1 Overview

The GS100 sensor belongs to the Parker family of gear speed sensors which can measure speed and direction of a ferrous gear based on principles of Hall-effect technology. This sensor broadcasts the measured data over a CAN bus using SAE J1939 protocol. OEMs can customization multiple CAN parameters like baud rate, message frequency rate, and source address which provides easy tuning of the sensor according to the application need.

The sensor also provides direct access to Hall element's open-drain output for diagnostic purposes. Users can pull this output pin High through an external pull-up resistor and can observe the Hall switching by connecting to an oscilloscope.

The sensor is designed to be completely application-ready with a very robust performance and reliability across the temperature range (-40° C to 85°C) while supporting many electrical and mechanical industrial standards to withstand rugged applications. The sensor offers great immunity to RFI, EMI and EMC. The sensor is designed and manufactured by keeping Parker quality standards in mind that offers a wide airgap range between the target gear to the sensor nose that helps producing a reliable speed output across the specified airgap. The GS100 sensor is suitable for applications which requires to share the target's speed and direction information over CAN to all other devices in the application without complex dedicated wiring in between. The sensor maintains great connection to the host even in harsh environment applications; thanks to DTM04-6P standard integral connector, which has an interfacial seal that protects pins from moisture and corrosion.

The features like Re-programming the sensor's firmware over CAN, enables our development team to rapidly add custom software features to the sensor's firmware to improve functionality over time and gives the ability to the end user to seamlessly update the sensor's firmware on deployed devices without unmounting the sensor from application.

3.2 Features and Benefits

- Measures both Speed and Direction of a Ferrous target gear
- CAN based output along with a digital ON/OFF Open-drain output
- Wide Airgap range and operating Voltage
- Robust and Reliable across the temperature range
- Great Immunity to external interreference.
- Over Voltage, Reverse Voltage and Short Circuit Protected
- IP67 and IP69K rated design
- Reprogrammable over CAN

4 Sensor Specifications

4.1 Operating Characteristics

Characteristic	Symbol	Min	Тур.	Max.	Unit	
Electrical						
Supply Voltage	Vcc	8	12	16	V	
Reverse Voltage Protection	VRcc	-	-	-26	V	
Under Voltage Lockout	Vcc(UV)	-	5	-	V	
Over Voltage Lockout	Vcc(OV)	-	19.5	-	V	
Supply Current @8V [1]	Icc @8V	25	33	42	mA	
Supply Current @12V [1]	Icc @12V	26	34	43	mA	
Supply Current @16V [1]	Icc @ 16V	28	35	44	mA	
Startup Voltage	Vcc(Startup)	6	-	-	V	
Startup Duration	tstartup	380	450	700	ms	
Temperature Characteristics						
Operating Ambient Temperature	Та	-40	25	85	°C	
Storage Temperature	Tstg	-40	-	105	°C	
Input and Output Signal Characterist	tics	1		1		
Operational Airgap [2]	AG	1.02	-	2.03	mm	
External Pull-Up	Rext		6.8		kΩ	
Recommended Pull-Up Voltage	Vcc-Pullup	-	5	12	V	
Operational Frequency [3]	fop	0.01		5	kHz	
Output signal Rise Time [4]	tr	-	30	-	μs	
Output signal Fall Time [4]	tr	-	0.6	-	μs	
Output signal High Voltage (sink) [4]	Vон	3.45	3.69	3.95	V	
Output signal Low Voltage (sink) [4]	Vol	0.45	0.7	0.95	V	

CAN (SAE J1939) communication characteristics											
CAN baud rate	CANbaud	125	250	1000	KBPS						
CAN Message data Rate	MDr	10	50	2000	ms						
Number of Output Pulse Samples for Speed and direction	NssD	1	8	15	-						
Speed output Tolerance		-2	-	2	%						
Tooth Pulse Counter [5]	Pcounter	0	-	1,000,000	-						
CAN Message Counter [5]	Mcounter	0	-	7	-						
CAN default Source Address	SAd	SAd 0x80									
CAN default Broadcast PGN	BPGN-d		-								

In Supply current is measured with $6.8k\Omega$ pull-up resistor connected to an external 5V supply.

[2] Airgap is dependent on the target geometry and material dependent and should be independently characterized.

[1] The sensor broadcasts 0Hz CAN output for any speeds below 10Hz. [4] This reading was measured when sensor was connected to a 12V power supply with a 6.8K Ω pull-up to external 5V [5] Once it reaches the max value, this value falls back to 0 and starts counting again.

4.2 Product Features

General Notes	
Mounting Fastener Torque	11.3 N-m
O-ring	AS-568A-114 or equal
Input and Output Wires	20 AWG SXL
Connector	DTM04-6P Deutsch
Weight	0.10 kg
Environmental	
EMC	EMC Emissions - Level 1 (ANSI/ASAE EP455 R2008) EMC Susceptibility - Level 3 (ISO 13766 2006)
ESD	Direct Contact: ± 8KV Air: ± 15KV
ЕМІ	ISO 7637-2 and 3 transients
Load Dump	ISO 7637-2 2004 Pulse 5a, +87V peak 400ms duration
Climate	IP67 and IP69K rated
Chemical	Liquids (resistance) standard automotive
Certifications	·
EU RoHS 2 CE EN61000-6-2, EN61000-6-4, EN	I 13309, ISO 13766-1, ISO13766-2, ISO 14982

4.3 Product Dimensions

Figure 4.3.1 GS100 Dimensions

4.4 Connector Pinout

The GS100 utilizes the Deutsch DTM04-6P connector. See below for pinout definitions:

Figure 4.4.1 GS100 Pin Position (DTM04-6P)

Terminal / Pin	Description	Wire Color
1	Supply Voltage	Red
2	Ground	Black
3	Speed Open Drain Output	White
4	CAN Source Address Offset Resistor Input	Orange
5	CAN H	Yellow
6	CAN L	Green

Table 4.4:1 GS100 Pinout

5 Product Usage

5.1 Functional Block Diagram

Figure 5.1.1 GS100 Functional Block Diagram

5.2 Address Resistor Selection Guide

The sensor has an address offset resistor input pin, which enables users to connect multiple sensors on a same CAN bus network. During power up, the sensor considers Source Address from input resistor value connected to the offset input pin (4th pin) and starts operating with that address; the table below shows the input resistor values and corresponding source addresses.

If this feature is not required, user should connect the pin to ground and should not be left this pin floating.

If the address resistor value is greater than $10K\Omega$, then sensor operates using the saved address from flash memory. If there is no address found in the flash, it uses the default source address 0x80.

Sensor also supports J1939 based source address claim methods and user can save their preferred address into flash memory in the sensor anytime during normal operation.

Note: Replacing the offset resistor value with a new input value during the sensor normal operation, will not change the source addresses immediately. New source Address will only be effective after a power cycle to the sensor.

Resistor Value [Ω]	Source Address
<294	0x80
590	0x81
976	0x82
1.5k	0x83
2.3k	0x84
3.32k	0x85
5.36k	0x86
9.53k	0x87
>10k	Source Address retrieved from Flash
	Memory
GND	0x80

Table 5.2:1 Resistor Source Address Selector

6 Installation Guidelines

6.1 Operating Conditions

The GS100 should not be continuously submerged in any liquid without added protection. The operating temperatures for the sensor are -40 to +85°C.

6.2 Power Supply Requirements

The GS100 Sensor is designed for 12V battery vehicles and will operate normally with input voltages between 8V to 16V. Cold Crank Start-up Voltage for this sensor is 6V up to 40ms. The detailed power requirements are mentioned in previous chapters and Electrical notes.

6.3 Mating Connection

The GS100 uses the Deutsch DTM04-6P connector. The mating connector would be the DTM06-6S.

Note the GS100 terminals are <u>nickel</u> plated. It is recommended to use nickel plated connections to avoid galvanic corrosion over time.

6.4 Mounting Guideline

Always depower and depressurize the application prior to installing or replacing the sensor.

- The sensor is designed to fit a hydraulic accessory port with a diameter of 20.00/20.052 millimeters [mm.]. Bore depth of 12mm is suggested for O-ring engagement. An O-ring provides the necessary fluid seal that prevents the bypass of fluids from the internal cavity of the application.
- The O-ring seal in GS100 sensor is intended for tank pressure applications, typically of 5 psi or less. Fluid pressure above this limit risks damage to the sensor and fluid leaks. Customer shall verify the performance of the sensor and O-ring seal subjected to application pressures.
- Product shall be used with the O-ring provided with the sensor. Contact Parker Engineering to discuss alternatives.
- Tighten the mounting fastener enough to prevent vibration and loosening. Do not exceed 11.3 Nm mounting torque (Based on M8 Grade 8.8 fastener).
- The sensor harness should be securely mounted to prevent strain and vibration. Review application movement prior to selecting mounting points to avoided pinch points as well as vibration and strain as these things could damage to the harness and lead to intermittent failures in the output signals.

- Air gap is one of the vital requirements to this sensor to operate normally and to measure the target gear's speed and direction accurately. It varies from target to target, contact Parker Engineering for optimum airgap before installing the sensor in the application. Failing to mount the sensor within the optimized airgap range, would cause incorrect output information and may not give output at all.
- Always prevent the sensor making physical contact with the rotating target as will lead to damage of the sensor and/or damage to the surrounding environment.
- Sensor orientation is as important to the operation. If the mounting orientation is not measured for a specific target, application could see signal jitter which causes inaccurate speed measurements.

The perfect optimized orientation would be the Hall elements inside the sensor should be 90 degrees to the target gear's tooth angle.

Due to manufacturing tolerances, evaluation by the OEM is required to verify the output signal is of acceptable quality after the sensor is properly mounted.

7 CAN Information

7.1 SAE J1939

The J1939 standards come from the international Society of Automotive Engineers (SAE) and were developed to provide a standard architecture by which multiple electronic systems on a vehicle can communicate. J1939 has been implemented in a broad range of vehicles and transportation systems and provides a reliable communication protocol over a high-speed CAN network.

The GS100 uses this protocol to transmit its condition as a predefined set of outputs. All messages are SAE J1939 Proprietary B PGN's except the address claim request and response.

7.2 Network Compatibility

The GS100 is compatible with 125kbps, 250 kbps or 500kbps CAN baud rates, qualifying it as a "High-Speed" CAN sensor. Per ISO 11898-2, the linear bus must be terminated with two 120 Ω resistors at the ends of the transmission lines.

External CAN termination is required and not provided with the GS100 product. Follow SAE J1939 standards when creating the harness connected to the sensor.

7.3 Identifier Description

The J1939 protocol uses a 29-bit identifier. The 29-bit identifier is built up as follows:

- Bit 1-8 is Source Address (SA)
- Bit 9-24 is Parameter Group Number (PGN)
- Bit 25 is Data Page (**DP**)
- Bit 26 is Reserved (**R**)
- Bit 27-29 is Priority (**P**)

Each identifier has an associated 8-byte data field. The data field is built up as shown below.

		29-bit IDENTIFIER																											
					D		Parameter Group Number																						
	P	rior	ity	R	Ρ		PDU Format				PDU Specific						Source Address												
CAN 29																													
Bit ID	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Position																													

Table 7.3:1 J1939 CAN Identifier Structure

7.4 Data field structure

The Data Field is structured as Little Endian within the bytes, and Big Endian for the Data Field.

DATA FIELD										
BYTE 1BYTE 2BYTE 3-7BYTE 8										
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 4 3 2 1 0 7 6 1 0 7 6 5 4	32	2 1 0								

Table 7.4:1 Data Field Structure

7.5 Communication Message Types

The GS100 uses two communication message types: Global and Specific Address.

Global Message: This is the operational "Broadcast mode" message for all the axis tilt information and pitch and roll information on the sensor. In these messages the unit broadcasts the outgoing data on the J1939 at 50 ms intervals.

Specific Address Message: This is the "Command mode" message for the sensor. In these messages the GS100 receives write and query messages to its node address from the J1939 bus.

Ensure there is no loss of power while making programming changes with the GS100 in service mode

7.6 Adjustable User Parameters

The sensor has ability to change parameters over CAN that can be used to tune the sensor in different application scenarios. More detailed information and example usages are discussed in following chapters.

- Broadcast Message PGN (Default is FF75)
- Number of Samples taken to calculate Speed (can choose between 1-15 but the default is 8 samples)
- Message Data Rate (It can be varied from 10 ms to 2000 ms, default is 50ms)
- Source Address (Default is 0x80)
- CAN Baud Rate (125 kbps, 250 kbps, 500 kbps, and 1000 kbps. Default is 250kbps)

The following Tables will describe the CAN message information in detail and some application CAN examples are provided at the end.

7.7 Transmitted Messages

Broad	Broadcast Status Message											
Defa 0xFF7	Default PGN PF PS SA 0xFF75 (65397) 255 117 SA(1)		Parameter Group Definition Proprietary B	Default Priority 6	Default Broadcast Interval 50 ms (2)							
Data Byte	Length	Parameter Name		me	Format	Value	Description					
1	2 bytes	Freq	Frequency		Unsigned Integer	Resolution: 1 Hz/bit Data range: 0 to 10,000 Hz	Calculated Frequency Byte1: LSB, Byte2: MSB.					
3	1 byte	Operational State		tate	Unsigned Integer	0 – Initialize 1 – Operational 2 – Hall Faulted	Operational State					
4	1 byte	Unused Bits			Unsigned Integer	0xFF	Unused Bits					
5	20 bits	Pulse Counter(3)		(3)	Unsigned Integer	Resolution: 1 pulse per bit Data Range: 0 to 1,000,000	Measured pulse counter value. Byte 5:LSB.					
7.5	2 bits	Forward Direction		tion	Unsigned Integer	0x00 - Not in Forward 0x01 - Forward 0x10 - Fault 0x11 - Not available	Direction: Forward, Reverse, No Move.					
7.7	2 bits	Reverse Direction		Reverse Direction Uns		0x00 - Not in Reverse 0x01 - Reverse 0x10 - Fault 0x11 - Not available						
8	4 bits	Mess	age Cou	nter	Per SPN 4206	0 to 7	Increments from 0 to 7, overflows to 0.					
8.5	4 bits	Chec	ksum		Per SPN 4207	-	Calculated Checksum(4)					

1. SA is the source address, DA is destination address, PF is PDU Format, PS is PDU Specific, PGN is Parameter Group Number.

2. Broadcast interval for CA Speed Sensor status message can be configured (see parameter number 02 in Configuration Parameters, Table 9).

3. The pulse counter will roll over to 0 when it passes 1,000,000 in a forward direction. The pulse counter will roll over to 1,000,000 when passes 0 in a reverse direction. The pulse counter will default to 0 at startup.

4. Checksum = Byte1 + Byte2 + Byte3 + Byte4 + Byte5 + Byte6 + Byte7 + Message Counter & 0x0F + Message ID Low Byte + Message ID Mid Low Byte + Message ID High Byte

5. Message Checksum = (((Checksum >> 6) & 0x03) + (Checksum >> 3) + Checksum) & 0x07.

Addres	ss Claim Messag	ges							
Addre	ss Claimed – AC	(1)(2)							
	PGN	PF	PS	SA	Parameter Group Definition				
0x	EE00(60928)	238	255	SA (1)	PDU1 Format				
Data Byte	Length	Р	arameter Na	ime	Format				
1	21 bits	le	dentity Numl	ber	SPN 2837, Manufacturer Serial Number				
3.6	3.6 11 bits Manufacturer Code				SPN 2838, 71 – Vansco, cannot be changed				
5.1	5.1 3 bits ECU Instance				SPN 2840, ECU Instance is 0.				
5.4	5 bits	Fu	unction Insta	nce	SPN 2839, Function Instance is 0.				
6	1 byte Function				SPN 2841, Speed Sensor function for industry group and vehicle system.				
7.1	Y.1 1 bit Reserved				For Speed Sensor this bit is 0.				
7.2	7 bits	١	/ehicle Syste	em	SPN 2842, Vehicle System is 0.				
8.1	4 bits	Vehic	le System Ir	stance	SPN 2843, Vehicle System Instance is 0.				
8.5	3 bits	Industry Group			SPN 2846, Industry Group is 0.				
8.8	1 bit Arbitrary Address Capable			Capable	SPN 2844, 0 – Not capable of selecting alternate Source Address itself, cannot be changed.				
Canno	t Claim Address	5							
	PGN	PF	PS	SA	Parameter Group Definition				
0x	EE00(60928)	238	255	254	PDU1 Format				
Data Byte	Length	Р	arameter Na	ime	Format				
1	21 bits	le	dentity Numl	per	SPN 2837, Manufacturer Serial Number				
3.6	11 bits	Ma	anufacturer (Code	SPN 2838, 71 – Vansco, cannot be changed				
5.1	3 bits		ECU Instand	e	SPN 2840, ECU Instance is 0.				
5.4	5 bits	Fu	unction Insta	nce	SPN 2839, Function Instance is 0.				
6	1 byte		Function		SPN 2841, speed sensor function for industry group and vehicle system.				
7.1	1 bit		Reserved		0				
7.2	7 bits	١	/ehicle Syste	em	SPN 2842, Vehicle System is 0.				
8.1	4 bits	Vehic	le System Ir	istance	SPN 2843, Vehicle System Instance is 0.				
8.5	3 bits		Industry Gro	up	SPN 2846, Industry Group is 0.				
8.8	1 bit	Arbitra	ary Address	Capable	SPN 2844, 0 – Speed Sensor is not capable of selecting alternate Source Address itself, cannot be changed				

DM1(1)	DM1(1) Messages																		
P	GN	PF	PS	SA	Parameter Group Definition	Default Priority													
0xFEC	A (65226)	255	202	SA	Proprietary B	6	Default Broadcast Interval 1 sec(2)												
Data Byte	Length	Parameter Name		me	Format	Value	Description												
1	2 bytes	Unused bytes			Unsigned Integer	0xFFFF	Reserved.												
3	19 bits	SPN(3)			Unsigned Integer	0x7F000	Proprietary SPN, used to indicate an error with the hall effect sensor.												
5.4	5 bits	FMI	FMI		FMI		FMI		FMI		FMI		-MI		11		Unsigned Integer	0 or 8	0 - speed is greater than 10 kHz.8 - Either of the two hall sensor outputs is missing.
6	1 bit	SPN Metho	PN Conversion Un		Unsigned Integer	0	Speed Sensor uses version 4 conversion method. This requires that the SPN conversion mode is zero.												
6.2	7 bits	Occu	rrence C	ount(4)	Unsigned Integer	0 to 126	-												
7	2 bytes	Unuse	ed Bytes		Unsigned Integer	0xFFFF	Reserved												

DM1 Example (No Error)

Identifier	D0	D1	D2	D3	D4		D5	D6	D7
18FECA80	0xFF	0xFF	0x00	0x00	0x00	0x00		0xFF	0xFF
DA = 0xF9,	Unused		19 bits – Proprieta	ary SPN	5 bits -	1-bit	7 bits -	Unused	
SA = 0x80(Speed Sensor).				-	FMI	SPN	Occur. Count		

1. DM1 messages represent the currently active diagnostic trouble codes (DTCs).

2. A DM1 message will be transmitted, regardless of the presence or absence of any DTC, once every second and on state change. No more than one state change per DTC per second be transmitted.

3. The 19-bit Suspect Parameter Number is used to identify the item for which diagnostics are being reported.

4. The 7-bit Occurrence Count field contains the number of times a fault has been independently detected. The occurrence count will not be incremented from 126 to 127.

7.8 Request and Response Messages

SOFT, CI and Address Claim Message Request									
J1939 Request PGN(3)(4)(5)									
PGN		PF	PS	SA	Parameter Group Definition				
0xEA00 (59904)		0xEA(234)	DA(2)	SA	PDU1 Format				
Data Byte	Length	Parameter Name			Format				
1	3 bytes	Supported PGN list	Supported PGN list(1), LSB First						
4	5 bytes	Reserved			0xFF				

1. The GS100 supports request messages sent to the following PGN:

- 0x00EE00 Address Claimed
- 0x00FEDA Software Identification (SOFT)
- 0x00FEEB Component Identification (CI)
- 2. The request message may be sent to the specific Source address (0-253) or the Global destination address (255).
- 3. The GS100 will respond to a request message for Address Claimed with a successful Address Claimed (AC) message before resuming other transmissions; otherwise the Cannot Claim Address message will be sent, and the speed sensor will remain silent.
- 4. The GS100 will respond to a request message for Software Identification with the SOFT message.
- 5. The GS100 will respond to a request message for Component Identification with the Component Identification (CI) message.

SOFT and CI Message Response

Software Identifie	cation – SOFT(1)(2)(3)									
Р	GN	PF	PS	SA		Parameter Group Definition				
0xFED/	A (65242)	254	218	SA		PDU2 Format				
Data Byte	Length		Paramete	r Name		Format				
1	1 byte	Number of	Software I	dentificati	on Fields	SPN 965, 4 (software number, software version type, software version major, software version minor)				
2	6 bytes	S	Software De	escription		953604, 6 ASCII characters.				
7	1 byte	Software Type				ASCII character, 'P' = production, 'B' = beta				
8	1 byte	Sc	oftware Maj	or Versior	n	Software major version, 1 ASCII character.				
9	2 bytes	Sc	oftware Min	or Versior	n	Software minor version, 2 ASCII characters.				
11-N	Variable	S	oftware Ide	entification	l	SPN 234, ASCII characters, software number, software version type, software version major and software version minor, each parameter is followed by an ASCII '*' delimiter.				
Component Iden	tification – Cl(1)(2)									
Р	GN	PF	PS	SA	Paramet	er Group Definition				
0xFEEE	B (65259)	254	235	SA	PDU2 Fo	ormat				
Data Byte	Length		Paramete	r Name		Format				
A	0 bytes		Mak	e		SPN 586, Not used, replace with ASCII '*' delimiter.				
В	7 bytes		Mod	el		SPN 587, 7 ASCII characters, Parker SAP part number.				
С	7 bytes		Serial Nu	umber		SPN 588, 7 ASCII characters, identity number from NAME, set by parameter number 001.				
D	Uni	t Number (Power Un	it)	SPN 233, Not used, replace with ASCII '*' delimiter. Note: Each parameter is followed by an ASCII '*' delimiter even if not used.					

1. Transport protocol (RTS/CTS for destination specific or BAM for global request) is required since the number of data bytes exceeds 8.

2. Sent in response to request PGN (See SOFT, CI and Address Claim Message Request Table).

3. Requesting the SOFT message will not impact the transmission of the functional message.

Vers	Version Request and Response Messages									
Versio	on Reques	t Message	es Received	by Speed Senso	or Application or Bootloader					
PGN		PF	PS	SA	Parameter Group Definition					
0xEF0	0 (61184)	239	DA	SA	Proprietary A					
Data Byte	Length	Parameter Name			Format					
1	1 byte	Command	d type		Unsigned Integer, message function for version number request. Value is 0x12.					
2	1 byte	Request t	уре		Unsigned Integer, Boot block Version Number- 100, boot block Part Number-101, Application Version Number-110, Application Part Number-111, boot block Version Number with mode-0x00 or 0xFF.					
3	5 bytes	Reserved			0xFF					
Respo	Response to Request for Version Number									
PGN PF PS SA			PS	SA	Parameter Group Definition					
0xEF0	0 (61184)	239	DA	SA	Proprietary A					
Data Byte	Length	Paramete	r Name		Format					
1	1 byte	Version Number Response Command			Unsigned Integer, message function for version number request. Value is 0x13					
2	1 byte	Request type or Operating mode			If the request type is 0xFF or 0x00, this byte indicates operating mode. 0- Run mode, 1- Reprogramming mode, otherwise this byte indicates request type.					
3	2 bytes	Software	Version		Ex: If the Version number is 104. 1-Major version, 04-minor version (LSB byte first). The version number will be indicated by 0x68 in hex.					
5	2 bytes	Hardware	Version		Ex: if the Version number is 104, Means 1-Major version, 04-minor version (LSB byte first).					
7	1 byte	Software	Build Number		Unsigned Integer, build number.					
8	1 byte	Reserved			0xFF					
Respo	onse for ve	ersion req	uest messag	es, If the reques	st type is for part number					
PGN		PF	PS	SA	Parameter Group Definition					
0xEF0	0 (61184)	239	DA	SA	Proprietary A					
Data Byte	Length	Paramete	r Name		Format					
1	1 byte	Version n	umber respon	se command	Unsigned Integer, message function for version number request. Value is 0x13					
2	1 byte	Request t	уре							
3	4 bytes	Part Num	ber		Unsigned Integer, 953604- Speed Sensor application, 953612- Speed Sensor bootloader. (LSB byte first MSB byte last).					
7	1 byte	Reserved			0xFF					

7.9 Sensor Configuration Messages

Config Speed	Configuration Message Format Speed Sensor Configuration Parameter Read/Write/Response(1)								
PGN	PGN PF PS SA			SA	Parameter Group Definition				
0xEF0	0 (61184)	239 DA(2) SA			Proprietary A				
Data Byte	Length	Parameter Name		I	Format				
1	1 byte	Command Type			Unsigned Integer, message function for configuring Speed Sensor. Value is 0x81.				
2	1 byte	Configuration Parameter Number			Unsigned Integer, configuration parameter to read/write (see Configuration Parameters, Table 9)				
3	1 byte	Read/Write/Response			0 = Read Configuration Parameter, 1 = Write configuration parameter, 2 = Response from Speed Sensor				
4	Up to 5 bytes	Data			Configuration parameter specific data (see Configuration Parameters, Table 9) Note: Data may be omitted or set to all 1's for read request				

1. After receiving a valid read message, the speed sensor will send a response message with the Destination Address (DA) set to the Source Address of the requestor. For write messages, Speed Sensor will not give response or acknowledgement.

2. When sending a read/write message the Destination Address (DA) will be the Source Address of the Speed Sensor receiving the message. Some examples for the configuration parameters read/write messages can be found at the end of the document.

Configurat	Configuration Parameters											
Parameter Number	Speed Sensor Configuration Parameter	R/W Capable	Length	Format	Default							
001	Reserved	NC	-	-	-							
002	Message Rate	R/W	2 bytes	Unsigned Integer, valid range: valid range: 10 to 2000 ms	50 ms							
003	Moving Average Filter Sample Size	R/W	1 byte	Unsigned Integer, valid range: 1 to 15.	8							
004	PGN for Broadcast Messages	R/W	2 bytes	Unsigned Integer. valid range: 0x0000 to 0xFFFF.	0xFF75							
005	CA Baud rate	R/W	1 byte	Unsigned Integer, 0 = 125 kbps 1 = 250 kbps 2 = 500 kbps 3 = 1000 kbps	1 (250 kbps)							
006	CA Base Source Address(1)	R/W	1 byte	Unsigned Integer, valid range: 0 to 253, 254 = NULL, 255 = global	Input Resistor, else 0x80							
007	Hardware Revision Number	R	5 bytes	Unsigned. YR, WK, 04, Number 020,01,04,1 = 2020, first week, 04, first unit of that week	-							

1. On power ON, Speed Sensor considers ADC resistor input source address. If the resistor value is >10k, then it will consider the value in flash. If no value is available in flash, then 0x80 default source addresses will be used.

Resistor input modified during running will not change the source address or store the value in flash. When source address is modified using CA message, it will update during runtime and stores in flash. If the source address value changed using CAN message is out of range, Speed Sensor will ignore the request.

8 Application Examples/How Do I...

8.1 Read/Write Sensor's Message Rate

Example - Read Configuration Parameter, Message Rate											
Identifier	D0	D1	D2	D3	D4	D5	D6	D7			
18EFF980	0x81	2	0	FF	FF	FF	FF	FF			
DA = 0x80 (Speed	Command Type	Configuration	Read	Reserved Bytes							
Sensor)		Parameter	Configuration								
SA = 0xF9		Number	-								

Example - Response for Read Configuration Parameter, Message Rate										
Identifier	D0	D1	D2	D3	D4	D5	D6	D7		
18EF80F9	0x81	2	2	0x0A	0	00	00	00		
DA = 0xF9 SA = 0x80 (Speed Sensor)	Command Type	Configuration Parameter Number	Response	Data D3(LSB),D4	(MSB)	Unus	Unused Bytes			

Example - Write configuration parameter, Message Rate									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EFF980	0x81	2	1	0x0A	0	FF	FF	FF	
DA = 0x80(Speed	Command	Configuration	Write	Data		Reserv	ved Byte	s	
Sensor)	Туре	Parameter	Operation	D3(LSB),D4(N	/ISB)				
SA = 0xF9		Number							

• For configuration parameter write operation, Speed Sensor will not send any acknowledgment or response.

8.2 Read/Write Example for Sensor's Moving Average Filter Sample Size

Example - Read Configuration Parameter, Moving Average Filter Sample Size									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EFF980	0x81	3	0	FF	FF	FF	FF	FF	
DA = 0x80(Speed	Command	Configuration	Read	Reserved Bytes					
Sensor)	Туре	Parameter	Configuration						
SA = 0xF9		Number							

Example - Response for Read Configuration Parameter, Moving Average Filter Sample Size									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EF80F9	0x81	0x03	0x0A	0x00	0x00	0x00	0x00	0x00	
DA = 0xF9 SA = 0x80(Speed Sensor)	Command Type	Configuration Parameter Number	Data	Unused E	Bytes				

Example - Write Configuration Parameter, Moving Average Filter Sample Size									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EFF980	0x81	3	1	0x0A	FF	FF	FF	FF	
DA = 0x80(Speed	Command	Configuration	Write		Reserved Bytes				
Sensor)	Туре	Parameter Number	Operation	Data					
SA = 0xF9									

8.3 Read/Write Example for Sensor's Broadcast Status Message PGN

Example - Read Configuration Parameter, Message Rate										
Identifier	D0	D1	D2	D3	D4	D5	D6	D7		
18EFF980	0x81	4	0	FF	FF	FF	FF	FF		
DA = 0x80(Speed Sensor) SA = 0xF9	Command Type	Configuration Parameter Number	Read Configuration	Rese	rved By	rtes				

Example - Response for Read Configuration Parameter, Message Rate									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EF80F9	0x81	4	2	0x75	0xFF	0	0	0	
DA = 0xF9,	Command	Configuration	Response	Data		Unuse	ed Byte	S	
SA = 0x80(Speed Sensor)	Туре	Parameter	-	D3(LSB),D4	(MSB)				
		Number							

Example -	- Write Configura	ation Parameter	PGN For	Broadcast	Messages
Example	white conligue			Dioudoust	medduged

Identifier	D0	D1	D2	D3	D4	D5	D6	D7
18EFF980	0x81	4	1	0x75	0xFF	FF	FF	FF
DA = 0x80(Speed Sensor)	Command	Configuration	Write	Data		Reser	ved By	tes
5A = 0XF9	туре	Number	Operation	D3(LSB),D4	(IVISB)			

8.4 Read/Write Example for Sensor's CAN Baud Rate

Example - Read Configuration Parameter, CAN Baud Rate									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EFF980	0x81	5	0	FF	FF	FF	FF	FF	
DA = 0x80(Speed Sensor)	Command	Configuration	Read	Reserved Bytes					
SA = 0xF9	Туре	Parameter	Configuration						
		Number							

Example - Response for Read Configuration Parameter, CAN Baud Rate									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EF80F9	0x81	0x05	0x02	0x00	0x0 0	0x00	0x00	0x00	
DA = 0xF9 SA = 0x80(Speed Sensor)	Command Type	Configuration Parameter Number	Data	Unuse	d Bytes				

Example - Write configuration parameter, CAN Baud Rate (1)									
Identifier	D0	D1	D2	D3	D4	D5	D6	D7	
18EFF980	0x81	5	1	0	FF	FF	FF	FF	
DA = 0x80(Speed Sensor) SA = 0xF9	Command Type	Configuration Parameter Number	Write Operation	Data	Reser	ved By	tes		

8.5 Configuring Source Address using CAN Command

Example - Configuration of Se	ource Addres	s using CAN Comm	and (1)					
Identifier	D0	D1	D2	D3	D4	D5	D6	D7
18ECFF44	20(2)	9	0	2	FF	D8	FE	0
18EBFF44	1(3)	FF	F5	E1	8	0	0	0
18EBFF44	2(4)	0	5	FF	FF	FF	FF	FF
DA = 0x80(Speed Sensor)	Command	Configuration	Write		Rese	erved B	ytes	
SA = 0xF9	Туре	Parameter Number	Operation	Data				

1. Two methods can configure the Source Address; Resistor input and Commanded Address Message.

 Commanded Address message will be sent to Speed Sensor by using BAM message, As the message contains more than 8bytes. It includes, NAME field of the sensor (for which source address need to modify – 8bytes) and source address value need to set – 1byte. Total message includes 9 bytes of information.

3. Connection management for Transport protocol BAM message as per J1939-21 standard.

4. Packet Number.

9 FAQ

The FAQ for GS100 can be found at http://blog.parker.com/faqs for additional product support.

MSG33-2383-UM 06/20

Parker Hannifin Corporation **Electronic Controls Division** 850 Arthur Avenue Elk Grove Village, IL 60007 phone 800 221 9257 www.parker.com