

Auto Steering Motor

(Model: KY170DJD01005-08G-V1)

User's Manual (V1.1)

JINAN KEYA ELECTRON SCIENCE AND TECHNOLOGY CO., LTD.

I. Overview

1.1 KY170DJD01005-08G-V1 Motor Parameters

1.2 Specification

- Continuous current 10A, maximum peak current 20A
- Rated DC supply voltage 12VDC (the power supply ranges 9 ~ 18VDC); Rated working power: 24VDC (the power supply ranges 9 ~ 28VDC, limit voltage 36V for hardware);

1.3 Operation Condition

1.3.1 Power supply

- Rated working power: 12VDC (the power supply ranges 9 ~ 18VDC); Rated working power: 24VDC (the power supply ranges 9 ~ 28VDC); Battery-powered is recommended.
- It can provide instantaneous current overload capability of 2 times continuous current.
- 1.3.2 operating requirements:
- Operators must wear electrostatic wristbands;
- The workbench must take anti-static measures;
- It is strictly forbidden to plug and unplug the aviation plug with power on.
- 1.3.3 Working environment:
- Operating temperature: -25~55°C (based on ambient temperature);

Storage temperature: -35~65°C (based on ambient temperature);

- Humidity: 5%--90%RH, condensation (25°C)
- Protection level: IP55, front of the motor is exposed to rain.
- Insulation performance: input to the chassis DC600V, leakage current 0.07mA. The insulation resistance is 20 MΩ or more.
- Three-proof requirements: meet the requirements of three defenses (dust, moisture, salt spray).
- Vibration requirements: Frequency 5Hz ~ 25Hz, amplitude 3mm, 0.09g.
 Frequency 25Hz~200Hz, amplitude 1.47mm, 116g.
 30min at each direction (Horizontal, vertical, and longitudinal directions)
- Cooling method: natural cooling

II. Functional Technical Indicators

- 2.1 Main Functions
 - Working mode: Speed mode, Torque mode, Absolute position mode, Relative position mode
 - Feedback:17-bit multi-turn absolute encoder.
 - Control: RS232, CAN2.0,CANopen;
 - LED indicator for faults;
 - To realize motor speed control and data reading via RS232;
 - Internal temperature monitoring and protection inside the driver;
 - Overcurrent and overload protection
 - Overvoltage and undervoltage protection
 - Locked-rotor and over speed protection
 - Motor short circuit protection

2.2. Working Mode Configuration Table

Work Modes	Control Signals	Feedback Part
Speed mode	RS232,CAN,CANopen	Absolute encoder
Position mode	RS232,CAN,CANopen	Absolute encoder

2.3. Technical Parameters

Parameters	Label	Parameter value	Unit
Voltage	U	9-28	VDC
Max continuous current	Ι _c	10	А
Max peak current	I _{max}	20	A
PWM switching	four	10	kH7
frequency	ipwin	10	1112
Output encoder power	+5Vout	5	VDC
supply	I _{cc}	100	mA

Jinan Keya Electron Science & Technology Co., Ltd.

Under voltage	Vu	7 (adjustable)	V
Over voltage	Vo	32(adjustable)	V
Operating temperature	Industrial grade (standard product)	-25 ~ +55	Ĉ
•	Military grade	-40 ~ +65	
Storage temperature	Industrial grade (standard product)	-35 ~ +65	°C
	Military grade	-55 ~ +85	

III. Port Description

3.1. Interface Definition

Port	Definition	Description	Recommend wire			
1 0	IN+	Power input +	1.5mm ²			
1, 2	IN+	Power input +	1.5mm ²			
2 4	IN-	Power input -	1.5mm ²			
3、4	IN-	Power input -	1.5mm ²			
5	D+	Encoder battery+	0.5 mm ²			
6	D-	Encoder battery-	0.5 mm ²			
7	ТХ	RS232—TX	0.5 mm ²			
8	RX	RS232—RX	0.5 mm ²			
9	GND	0 V	0.5 mm ²			
10	CAN-H	CAN-H	0.5 mm ²			
11	CAN-L	CAN-L	0.5 mm ²			
12	NG	Idle				

(1) TX, RX, GND:

RS232 interface, to achieve command control, as well as parameter settings, operating state commissioning,

etc.

(2) CAN-H, CAN-L: CAN interface, to achieve command control.

(3) D+, D- encoder battery: an external battery is required when the power-off position is memorized (use

3.6V

battery specially for encoders) After installing the battery, the motor needs to be powered off and restarted to take effect. If the battery is subsequently replaced or the battery is powered off for multiple turns, the position will be cleared.

(4) IN+ 、IN- :

Since the power cord required for vehicles is long, the voltage drop will increase due to line loss when the current is large. It is recommended to select the wire specifications according to below table.

Cable length (m)	Cable diameter (mm ²)	Allowable Continuous Amps
1-3	2.5	<17A
3-4.5	4	<25A

Note: When the motor "undervoltage alarm", there may be the following reasons:

(1) The battery is aging, and the internal resistance of the battery will increase after a long time of use, thereby reducing the battery's discharge capacity.

(2) The steering hydraulic pump is aging, the flow valve is blocked, etc., which causes the steering resistance to increase and the motor current to increase.

(3) The cable diameter is too thin, the voltage drop is large, and when the torque is large, the voltage is pulled down, causing the driver to detect undervoltage.

3.2. Serial Port Connection

Using high-speed standard serial cable, DB9 plug meets the label definition:

Driver label	RS232 cable pin No.
ТХ	2
RX	3
GND	5

IV. Operating Instructions

- 4.1. The auto steering motor software
 - 4.1.1 Configuration instructions
 - Servo controller parameters can be set by the software.
 - The software communicates with the motor driver through RS232, and the baud rate is 115200bit.
 - The software is developed under the .NET environment. XP systems need to have .NET 4.0 installed.
 - 4.1.2 The software instructions
 - 4.1.2.1 Double click the program "kyMotor Control Utility"

へ 名称	修改日期	类型	大小
Languages	2022/9/16 9:38	文件夹	
CANalyst	2022/10/25 15:29	快捷方式	1 KB
datalog.txt	2023/3/8 13:22	文本文档	1,826 KB
DevComponents.DotNetBar2.dll	2015/10/6 22:27	应用程序扩展	5,344 KB
🔄 info.ini	2023/3/8 13:14	配置设置	1 KB
👷 kyMotor Control UtilityV4.3.exe	2022/9/17 10:13	应用程序	500 KB
kyMotor Control UtilityV4.3.exe.Config	2023/3/8 13:14	CONFIG 文件	1 KB
kyMotor Control UtilityV4.3.pdb	2021/9/7 17:09	PDB 文件	378 KB
📧 kyMotor Control UtilityV4.3.vshost.exe	2021/9/7 17:09	应用程序	12 KB
kyMotor Control UtilityV4.3.vshost.ex	2021/9/6 10:19	CONFIG 文件	1 KB
🗋 kyMotor Control UtilityV4.3.vshost.ex	2012/6/6 2:06	MANIFEST 文件	1 KB

4.1.2.2 Click "Start" button. If the communication is successful, the interface will read the control parameters, while the LED on the upper left will flash green, indicating that the parameters are communicating successfully.

-		_			2023/1	0/9 16:0	9:01	Lan	guage:	Engl	i sh		• V	ersio:	n: ver	4.3	Single Ch	annel 🤻	•			Start	Stop		
Set gnal	tup	Sin	gle ch	annel		ork Node							Noto	r à F.	adhad										
		•	•	•					•		•				•	•	•	•			•	•		•	•
232	RC	Ainl	CAN	CANope	1 S	peed Mod	le Toro Mode	i Ine	Absol Posit Mode	ite on	Relati; Positi;	ve on Mode	Enco	der :	Kall	AS5147	Resolv r	e Servo Encoder	Hal r	l+Encod	ie Hall clos	e Hall+Enc	oder close	Test	absolute
E	rror S	Status																Posit	ion Contro	ı		Torque	control 1		
6		•	•	•	•	•	•	•	•	•	•	•	•	•										_	
01 V.	ver olt ge	Hard ware Over Curr	EEPR OM Erro r	Less Volt age	Brak e	Soft ware Over Curr	Cont rol Mode Faul	Oper atio n Mode	Spee d loss	Temp Warn	Hall Faul t	Rese rved	Moto r 1 temp erat	CAN Brea k	232 Bre k	k.					Send			Ser	nd 1
											-		0			-12		inable	Disabl	e					
				_	_		3				85										1				
						_		p=1					0						+		+				
				Iectric	al				s	peed						Pos	ition								
				Temp					м	otor (urrent					Bush	ar								
			M P	echanics osition	l of																				

- 4.1.2.3 Open the "Setup" interface and click the "Connect" button in the lower left corner to set up a connection between the software and the motor driver.
- Note: When reading the configurations, it must be done after the motor starts normally, and the configuration can't be read at the moment the motor is powered on, otherwise the configuration parameters will be reset to the initial value! ! !

KEY ELECTR	A	In [.]	telli	gent	contr	Fire Fire Fire	nware : sion: ver4.3	Sin	gle Channel	•	Uhoo Star	se CUM:	> Start Stop
Setup	Single c	hannel		allen aver	Canada			Constant					41
lam e	No	Paran	RAM	ROW		Setup Range	Name	No	Param	RAII	ROM		Setup Range
_i G	0000				Write	Non-Modified Content	System	0018				Write	CAN-ID (decimalism)
tor Poles	0001				Write	Even Number of 2-32	Control Way	rs 0019				Write	1-Analog 2-CAN 3-Serial Port 4-RC 5-CAMOPEN 6-Pulse 7-RS485
ated Speed	0002				. Write	80-3500	Control Mod	le 0020				Write	1-speed 2-Torque 3-Pos 4-Pos
ax Current	0003				Write	10-500	BPS	0021				Write	CAN BPS 1-125K 2-250K 3-500K 4-1M
ncoder PPR	0004				Write	1000-50000	Position	0022				Write	1-Encoder 2-Hall 3-Magnetic braiding 4-Resolver 8-Servo Encoder 8-Hall close 9-Hall+encoder 11-absolute 12-Linear encoder
urrent Kp	0005				Write	0.001-2	Over Voltag	e 0023				Write	Over Voltage Setting
urrent Ki	0006				Write	0.001-2	Less Voltag	e 0024				Write	Less Voltage Setting
peed Kp	0007				Write	0.001-2	Motor Temp	0025				Write	Notor Temp Protection Setting
need Ki	0008			_	Write	0.001-2	Direction	0026				Write	1-Motor 1 Reverse;2-Motor 2
osition Kp	0009				Write	0.001-2	Brake Time	0027				Write	1-30;0.1s-3s
······································	0010			_		0.001-2	Over load	0028				Write	1-20;1s-20s
USICION KI	0010				STICE	0.001 2	Hall status	0029				Write	Hall reverse
osition Kd	0011				. Write	0.001-2	Deceleratio	n 0030				Write	1-200;0.1s-20s
osition Ke	0012				- Write	0.001-2	Spare	0031				Write	Spare
cceleration	0013				Write	1-200;0.1s-20s	Spare	0032				Write	Spare
ostion	0014				Write	Slow Down in Advance	20-100				_		
agnetic	0015				Write	0.001-0.999							
agnetic	0016				Write	0.001-0.999	Spare	0041				Write	Spare
pare	0017				Vrite	Spare	Spare	0063				Write	Spare
S N. 1 170			(7					_				

4.1.2.4 The RAM in the red box can be modified. The left side of the red box is for the driver parameters, and the right side of the red box is the data in the E²ROM. In normal cases, the data in same row are consistent (equal). As the software data is continuously scanned, when modifying the data, modify it quickly and click the "Write" button correspondingly.

Keya Motor Monitor		_						
KEYA ELECTRON	Intellige	nt contr	Firmware :]	Cho	ose COM:	
Setup Single channel	2023/10/9 16:13:29	Language: Eng.	ish Version: Ve	r4.3 Sin	gle Channel 💌		2	tart Stop
Name No Pars TAG 0000	m RAM RO	H Write	Setup Range Name Non-Modified Content System	No. 0018	Param RAII	ROM	Write	Setup Range CAN-ID (decimalium)
Motor Poles 0001		Write	Even Number of 2-32 Control 80-3500 Control	Ways 0019 Mode 0020			Write	1-Analog 2-CAN 3-Serial Fort 4-RC 5-CAMOPEN 6-Pulse 7-RS485 1-speed 2-Torque 3-Pos 4-Pos
Max Current 0003		Trite	10-500 BPS	0021 n 0022			Write Write	CAN BFS 1-125K 2-250K 3-500K 4-1M 1-Encoder 2-Hall 3-Magnetic braiding 4-Resolver 8-Servo Encoder 8-Hall
Current Kp 0005		Write Write	0.001-2 Over Vi 0.001-2 Less Vi	ltage 0023 ltage 0024			Write Write	close 9-Malitencoder 1-absolute 2-Linear encoder Over Voltage Setting Less Voltage Setting
Speed Kp 0007		Write Write	0.001-2 Motor 1 0.001-2 Direct:	emp 0025 on 0026			Vrite Vrite	Notor Temp Protection Setting 1-Notor 1 Reverse,2-Notor 2
Position Kp 0009 Position Ki 0010		Trite	0.001-2 Brake 1 0.001-2 Over 1	ime 0027 ad 0028			Write Write	1-30;0.1s-3s 1-20;1s-20s
Position Kd 0011 Position Kc 0012		Write Write	0.001-2 Hall st Deceler 0.001-2 Source	atus 0029 ation 0030			Write Write	Mall reverse 1-200:0.1s-20s
Acceleration 0013 Postion 0014		Trite	Spare 1-200:0.1s-20s Spare Slow Down in Adwance 20-100	0032			Write	Spare
Magnetic 0015 Magnetic 0016		Write	0.001-0.999 0.001-0.999 Spare	0041			Write	Spare
Spare 0017		Write	Spare Spare	0063			Write	Spare
● Not 170 Thre 170 Thre	ee Connect Di	sConnect			Save To File	Read Fron	Burn	

- 4.1.2.5 For example, the maximum current needs to be changed, the E² ROM data is "20", need change it to "15". Change "RAM" of 0003 to 15, and click "Write" button quickly. Confirm that "15" is no longer changing. Same steps for other parameters, multiple parameters can be modified at the same time.
- 4.1.2.6 Click the "Burn" button at the bottom right. Program the data in RAM to E²ROM. Note: The "Burn" process takes 3 seconds or so.
- 4.1.2.7 The "Burn" button turns red, indicating that data is being programmed. Please wait and observe the data. Until it prompts "Burned successfully". Then the data (RAM, ROM, Param) in blue blocks are consistent, indicating that the ROM data is stored into the driver.
- 4.1.2.8 Until now, the modification of the control parameters is completed. Click the "Disconnect" button and close the software.
- 4.1.2.9 Electrify the motor driver again. (Note: No matter you modify the configuration or not, you must power off the motor and restart it.)
- 4.1.2.10 When burning the configuration for multiple motors, you can click "save to file" and then "read from" buttons to download to another motor.

Not 170	0 Thre 🔿 170 Three	Connect	aect				Save To File	Read From	Burn	
Spare	0017		Write	Spare	Spare	0063			Write	Spare
Magnetic	0016		Write	0.001-0.999	Spare	0041			Write	Spare
Magnetic	0015		Write	0.001-0.999						
and the second second										

- 4.1.3 The software instructions Parameter function description
- **0000** Identifier. when the system is connected, recognize the software communication or serial port control. (No need to modify)
- **0001** The poles number of motor.
- **0002** Rated motor speed (The factory setting is 100rpm)

- 0003 Maximum protection current of motor (Factory setting 20A)
- 0004 The number of encoder lines
- 0005 Kp parameter of current loop PI control of driver
- 0006 Ki parameter of current loop PI control of driver
- 0007 Kp parameter of speed loop PI control of driver
- **0008** Ki parameter of speed loop PI control of driver
- 0009-0012 PID parameter of position loop.
- **0013** Acceleration time. "50" means the acceleration time from 0rpm to rated speed is 5s.
- 0015 Zero position compensation of magnetic encoder
- 0016 Zero position compensation of resolver
- 0017 Standby
- **0018** System address of driver, or node number of control. (Decimal number)

This parameter is used in the CAN, CANOpen.

For example: the CAN bus ID: 0x06000000 + system address of driver

- 0019 Control signal selection
 - 2--CAN 3-- RS232 5-- CANopen
- 0020 Work mode selection:
 - 1--Speed control
 - 2--Torque control
 - 3--Absolute position control
 - 4--Relative position control
- **0021** CAN bus baud rate selection (Factory setting 250K)
 - 1--125k 2--250k 3-- 500k
- 0022 Position sensor selection (Standard setting is Absolute encoder)
 - 3--Single-turn absolute encoder
 - 11--Multiturn absolute encoder
- 0023 The value of Over voltage protection
- 0024 The value of Less voltage protection
- 0025 The value of temperature protection
- 0026 The motor rotation direction (speed mode, torque mode)

- **0027** The brake delay braking time. (The motor has no this function.)
 - "10" means 1 second after receiving the disable signal, the motor will lose power and hold the brake.
- 0028 Overload delay protection time.
 - "1" means protection will occur immediately after reaching the protection current for 1s.

"20" means time 20s. If the driver current reaches the protection current, the controller will do overload protection after 20s.

- **0030** Deceleration time, "50" means the deceleration time from rated speed to 0rpm is 5s;
- **0033** Zero point of steering motor

⁰⁻⁻Forward 1--reverse

Modification is not allowed. Otherwise, the motor performance will be affected.

0034 CAN heartbeat upload time (Standard setting: 20ms)

0-2000 corresponds to 0-2000ms

Other parameters: spare

- 4.2 Indicator description
 - 4.2.1 Status indicator (Blue light): Observe the status of the driver according to the blinking frequency of the indicator.

No. of flashes	Definition	Possible Reasons
0	Enable status	No fault
1	Disable	No fault, disable status
2	Over voltage	Input voltage is higher than 32V (configurable)
3	Hardware over current protection	Over current protection, it is caused by motor Instantaneous
		maximum current, short circuit or field tube damage
4	EEPROM error	Enter the Flash configuration program, please power off and
		restart the driver after the configuration.
5	Less voltage	Input voltage is lower than 7V(configurable)
6	Reserved	Reserved
7	Over current protection (the	The phase current reaches the software setting protection
	protection value in software)	value, then stop output.
8	Control mode fault	Control mode selection error
9	Phase failure	The motor's phase cable disconnected, or the voltage
		between the motor and the driver doesn't match with each
		other
10	Stall protection	The actual speed exceeds 25% of the set value
11	Temperature alarm	The driver stop working when the temperature is above 85°C
12	Hall fault	Motor Hall is off or faulty
13	Current sensor fault	The internal current sensor is faulty
14	Spare	Spare
15	CAN disconnected	Under CAN mode, no CAN signal input
16	RS232 disconnected	Under RS232 mode, no 232 signal input

4.2.2 Fault indicator (Red light):

Under any control mode, the red indicator light will always be on in case of any failure.

4.3 CAN2.0 command instructions

4.3.1 General configuration

• CAN bus protocol baud rate 250Kbps

- Frame format: extended frames,hexadecimal
- The watchdog detects the line-off period of 1000ms (speed command is sent continuously, the interval must not exceed 1000ms)
- According to the CANOpen format, the data adopts query mode.
- According to the CANOpen format, there is a fixed heartbeat and send related data (Frequency is 1Hz).
- The ID is 4 bytes and the instruction is 8 bytes.
- Send ID: 0x06000000+ driver address (ID can be configured by the software, factory default is 1)
- Feedback ID: 0x05800000+ driver address
- Heartbeat ID:0x07000000+ driver address
- The returned query data are all hexadecimal, which need to be converted into decimal data in sequence.

🯉 CANalyst	2100	10.000			LA 200.					
文件 操作	查看 工具	窗口 Language	帮助							
打开设备关	X 2000 (初设备 数据列)	1000 月 10000 月	表状态 名称设置	1000 手动滚屏	自动滚屏 监视:	数据				
-	CANalyst 设备:(〕通道 0		CANalys	. 设备:0 通道 1					
🖸 启动 🧧	停止 🗾	時到 🚺 清空	🚺 保存]] 过滤	🖸 时间显示 🔻	🔲 显示方式	🔻 💽 🎗	藏发送帧	💽 显示发送帧]
序号	传输方向	时间标识	名称	帧ID(靠右对齐) 帧格式	帧类型	数据长度		数据(十六进制)	-
10173	接收	16:11:11:948		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10174	接收	16:11:11:963		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10175	接收	16:11:11:963		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10176	接收	16:11:11:979		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10177	接收	16:11:11:995		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10178	接收	16:11:11:995		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10179	接收	16:11:12:010		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10180	接收	16:11:12:026		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10181	接收	16:11:12:026		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10182	接收	16:11:12:041		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10183	接收	16:11:12:041		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	
10184	接收	16:11:12:057		0x07000001	数据帧	扩展帧	08	05 00 00	00 00 00 40 01	=
										•
20		1.1								
中貞孝	^{数据帧}	\$	每次帧数	; [1	每次发送间	鄧高 (n s): 0		发送次数:	1	
•##	名式: 扩展帧	+	•前ID (Hex)	固定	\$ 060	00001			发送	
发送方	5式: 正常发送	\$	数据(Hex)	: 固定	\$	Oc 20 01 00 00	00 00		停止	
基本操作(¥务操作) 文件	操作	2	发送耗时(;) 0.000	发送帧数 8	ž	妾收帧数 1	0177 清	空计数

4.3.2 Instruction direction

Enable = 0x230D20010000000

- Disable = 0x230C20010000000
- Speed = 0x230020010000000
- Torque = 0x230120010000000
- Position = 0x230220010000000

Speed: -10000 -- 10000 corresponds to negative rated speed -- rated speed Torque: -10000 -- 10000 corresponds to negative rated torque -- rated torque Position: -2147483648 --- +2147483647 (10000/circle)

 Enable:
 23
 0D
 20
 01
 00
 00
 00
 00

 Return ID:
 0x05800000 + driver set address
 Return Data 60
 0D
 20
 00
 00
 00
 00
 00
 00

 Disable:
 23
 0C
 20
 01
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <

 Speed control: 23
 00
 20
 01
 DATA_H(h)
 DATA_H(1)
 DATA_L(h)
 DATA_L(1)

 Return ID: 0x05800000 + driver set address
 Return Data 60
 00
 20
 00
 00
 00

Torque control: 23 01 20 01 DATA_H (h) DATA_H (I) DATA_L (h) DATA_L (I) Return ID: 0x05800000 + driver set address Return Data 60 01 20 00 00 00 00 00

Position control: 23 02 20 01 DATA_H (h) DATA_H (l) DATA_L (h) DATA_L (l) Return ID: 0x05800000 + driver set address Return Data 60 02 20 00 00 00 00 00

Motor current query (A): 40 00 21 01 00 00 00 00 Return ID: 0x05800000 + driver set address Return Data 60 00 21 01 00 00 00 DATA

 Fault query: 40 12 21 01 00 00 00 00

 Return ID: 0x05800000 + driver set address

 Retun Data 60 12 21 01 DATA-H DATA-L 00 00

Motor speed query: 40 03 21 01 00 00 00 00 Return ID: 0x05800000 + driver set address Return Data 60 03 21 01 DATA_H (h) DATA_H (I) DATA_L (h) DATA_L (I)

Rotor mechanical position query(0-9999): 40 04 21 01 00 00 00 00

Return ID: 0x05800000 + driver set address Return Data 60 04 21 01 00 00 DATA-H DATA-L

Encoder count value query (four bytes): 40 04 21 02 00 00 00 00 Return ID: 0x05800000 + driver set address Return Data 60 04 21 02 DATA_H (h) DATA_H (I) DATA_L (h) DATA_L (I)

Power supply voltage query (V): 40 0D 21 02 00 00 00 00 Return ID: 0x05800000 + driver set address Return Data 60 0D 21 02 00 00 00 DATA

 Temperature query(°C): 40
 0F
 21
 01
 00
 00
 00
 00

 Return ID: 0x05800000 + driver set address

 Return Data
 60
 0F
 21
 01
 00
 DATA
 00

Heartbeat return command:

Return ID: 0x07000000 + driver address Return data: ELE-H ELE-L speed_H speed_L DATA_H DATA_L Err_H Err_L Description: ELE-H ELE-L is Multi-turn position count value (360/turn) speed_H speed_L is Motor speed (rpm/min; int type) DATA_H, DATA_L is the working current (A; int type) Err_H, Err_L is failure code, corresponding to the number of flashes of the indicator.

4.3.3 Example of CAN control

Note: When sending speed control commands and torque control commands, they need to be sent continuously, and the time interval must not exceed 1000ms, otherwise it will be judged as CAN disconnects and reports an error, you need to resend the enable command when starting again.

4.3.3.1 Speed Control:

(Speed command value **%**)X(preset max speed)= actual speed

The system address in the software is set as 1 (Parameter 0018 is set to 1) The "Control Ways" in the software is set as CAN. (Parameter 0019 is set to 2) The "Control Mode" in the software is set as speed control (Parameter 0020 is set to 1) The control command ID: 0x06000001 (extended ID)

Speed setpoint -10000-+10000 stands for -1500rpm-+1500rpm (0xD8F0) (0x2710)

- Eg: If you want the motor to run at 50 rpm(The rated speed in software is 100 rpm) Enable command: 23 0D 20 01 00 00 00 00 Speed command: 23 00 20 01 00 00 13 88 (0x1388 = 5000)
- Eg: If you want the motor to run at -50rpm (The rated speed in software is 100rpm) Enable: 23 0D 20 01 00 00 00 00 Speed command: 23 00 20 01 FF FF D8 F0 (0xD8F0 = -10000)

4.3.3.2 Torque control:

The limiting current value = (given command value 2000) x (The preset rated current) x 80%

The software sets the system address to 1 (Parameter 0018 is set to 1)

The "Control Ways" in the software is set as CAN (Parameter 0019 is set to 2)

The "Control Mode" in the software is set as torque control (Parameter 0020 is set to 2)

The control command ID: 0x06000001 (extended ID)

Command value -10000 — 10000 stands for negative rated torque -- positive rated torque (0xD8F0) (0x2710)

Eg 1: Rated torque 100% output

Enable:23 0D 20 01 00 00 00 00

Command: 23 01 20 01 00 00 27 10 (0x2710 = 10000)

Under this condition, when the phase current reaches the 80% of rated current, the motor will stop output after 5s.

Eg 2: Rated torque 80% output

Enable 23 0D 20 01 00 00 00 00

Command: 23 01 20 01 FF FF E0 C0 (0xFFFFE0C0 = -8000)

Under this condition, when the phase current reaches the 80%x80% of rated current, the motor will stop output after 5s.

4.3.3.3 Position Control (10000/circle)

Position command -50000—+50000 stands for 5 circles in anticlockwise—5 circles in clockwise (0xFFFF 3CB0) (0xC350)

The "Control Ways" in the software is CAN control (Parameter 0019 is set to 2)

The "Control Mode" in the software is set as Absolute position control (Parameter 0020 is set to 3)

Or The "Control Mode" is set as Relative position control (Parameter 0020 is set to 4)

The software sets the system address to 1 (Parameter 0018 is set to 1)

The control command ID: 0x0600 0001 (extended ID)

Data sending sequence:

- (a) Enable: 23 0D 20 01 00 00 00 00
- (b)Position control: 23 02 20 01 DATA_H (H) DATA_H (L) DATA_L (H) DATA_L (L)

Eg1: Make the motor rotate 1.8 circles in clockwise

- (a) Enable: 23 0D 20 01 00 00 00 00
- (b) Position control command: 23 02 20 01 FF FF B9 B0

Eg2: Make the motor rotate 72 degrees counterclockwise

(72 *(10000/360) = 2000 = 0x7D0)

- (a) Enable: 23 0D 20 01 00 00 00 00
- (b) Position control command: 23 02 20 01 00 00 07 D0
- 4.3.3.4 Mechanical zero calibration procedures
- ①. Straighten the wheel without connecting the battery. Set parameter 16 to 0.0 in the software; set parameter 17 to 0.0.
- ②. Adjust the mechanical position, power on the driver again, and read a certain value of the encoder position value (0-9999). (The software displays interface "position")
- ③. After converting the position value, set parameter 16 of the software, read a certain value of the current position value (0-9999), and write the corresponding parameter 16 (0-9.999) of the driver.

For example: feedback 8667, parameter 16 = 8.667;

④. After connecting the multi-turn encoder, cut off the power and restart it.

4.4 Serial port command instructions

4.4.1 General Configuration

The serial port communication port of the driver is set as follows:

- 115200bits/s
- 8-bit data
- 1 start bit
- 1 stop bit
- No parity
- HEX format

4.4.2 Control format

EO	data0	00	00	00 00		00	00
			<u> </u>	Н		L	
				Hexadecimal (Ten-thousandth r			h ratio)

E0 : Control command data0: 01 ----- Enable

00 -----Disable

• Speed mode:

Speed mode: -10000 ---- +10000 corresponds to negative rated speed ---- positive rated speed Enable: E0 01 00 00 00 00 00 00 Send forward speed control 10%: E0 01 00 00 00 00 03 E8 Send reverse speed control 10%: E0 01 00 00 FF FF FC 18 Disable: E0 00 00 00 00 00 00 00

- Torque mode: Torque mode:-10000 ---- +10000 corresponds to negative rated torque--- positive rated torque Enable: E0 01 00 00 00 00 00
 Send torque command 80%: E0 01 00 00 01 F 40 (0x1f40 = 8000)
 Send torque command -60%: E0 01 00 FF FF E8 90 (0xFFFE890 = -6000)
 Disable: E0 00 00 00 00 00 00
- Position mode: -2147483648----- +2147483647 (10000/circle) Make the motor run 5 circles in anticlockwise Enable: E0 01 00 00 00 00 00 00
 Position command: E0 01 00 00 00 00 c3 50 (0x0000C350 = 50000)

Make the motor run 3 circles in clockwise Enable: E0 01 00 00 00 00 00 00 Position command: E0 01 00 00 FF FF 8A D0 (0xFFFF8AD0 = -30000)

4.4.3 Query format

ED	Data1	00	00	00	00	00	00

ED: Means query command

- data1: 00 control status
- 01-----electric angle (internal data)
- 02-----Speed (RPM)
- 03-----Current (A)
- 04-----The rotor mechanical position (0-9999)
- 05-----Voltage (V)
- 06-----Temperature (°C)
- 07-----Fault code
- 08-----Position (10000/circle)
- 09-----Program version
- 0A-----Encoder fault query

Query the current motor speed (rpm)
 Send: ED 02 00 00 00 00 00 00
 Feedback: ED 02 00 64 00 00 00 00 00 00 00 00
 I.e. the current motor speed is 100rpm

Query the current motor Amps (A)
 Send: ED 03 00 00 00 00 00 00
 Feedback: ED 03 00 08 00 00 00 00 00 00 00 00
 I.e. the current motor Amps is 8A

Query the rotor mechanical position (0-9999)
 Send: ED 04 00 00 00 00 00 00
 Feedback:ED 04 1B 1F 00 00 00 00 00 00 00 00
 I.e. the rotor mechanical position is 6943 (10000/circle)

Query the input voltage of driver (V)
 Send: ED 05 00 00 00 00 00 00
 Feedback: ED 05 0C 00 00 00 00 00 00 00 00 00
 I.e. the input voltage of driver is 12V

Query the controller temperature (°C)
 Send: ED 06 00 00 00 00 00 00
 Feedback: ED 06 00 1A 00 00 00 00 00 00 00 00
 I.e. the controller temperature is 26°C

Query the cumulative position value (10000/circle) (data can be positive or negative)
 Send: ED 08 00 00 00 00 00 00
 Feedback: ED 08 00 01 86 A2 00 00 00 00 00 00
 I.e. the current position is 100002

Query the driver status
Send: ED 00 00 00 00 00 00 00
Feedback: ED 00 31 20 00 00 00 00 00 00 00 00
I.e. the driver status is 3: RS232; 1: Encoder; 2: Torque mode

Eg:

Send: ED 00 00 00 00 00 00 00 00 00 00 00 00

Feedback: ED 00 28 40 00 00

"2" control mode: 1.Analog signal 2.CAN 3.RS232 4.RC

"8" feedback way: 1.Encoder 2.Hall 3.AS5147 4.Rotary transformer 6. motor encoder

7.Hall + Encoder 8.Hall close loop 9.Hall+encoder close loop 10.test 11.Absolute value

"4" Working mode: 1.Speed mode 2.Torque mode 3.Absolute position mode 4.Relative position mode Therefore, the current status of driver is 2-CAN, 8-Hall close loop, 4-Relative position mode

• Query the fault code

Send: ED 07 00 00 00 00 00 00

Feedback: ED 07 00 10 00 00 00 00 00 00 00 00 00

I.e. the current fault code is 5, it is less voltage.

Fault code analysis

At first, convert the hexadecimal to binary, then check the "1" position from the right to the left, which corresponds to the indicator blinking frequency.

Eg: The feedback data is 03 01

0 3 0 1

0000 0011 0000 0001 ; corresponds to 1, 9, 10 three faults. Refer to Indicator Description table for details.

Encoder fault query
 Send: ED 0A 00 00 00 00 00 00 00
 Feedback: ED 0A A0 00 00 00 00 00 00 00 00 00
 I.e. the fault is: error bit, no battery;

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Error bit	Warning bit	No battery	Battery less	Too strong	Too weak	Over	Over speed
			voltage	magnetic	magnetic	temperature	
				field	field		

4.4.4 Serial heartbeat data

After successful communication, the status of driver will be transferred automatically. Start bit 0xEE, the data definition is as below: (hexadecimal)

Dat0	Dat1	Dat2	Dat3	Dat4	Dat5	Dat6	Dat7	Dat8	Dat9	Dat10	Dat11	Dat12
EE	Electri	cal angle	Fau	t code	TEMP	VOLT	Sp	eed		Pos	sition	A-1

Note: The returned data are in hexadecimal, should be converted to decimal.

V. Fault protection and reset

- 5.1 Failure protection basis
 - 5.1.1 Temperature alarm

When the temperature of the driver exceeds 85 °C, a temperature alarm occurs. When it is restored to 75 °C, the alarm is cleared automatically.

5.1.2 Overcurrent protection

When the phase current reaches the set current value, it stops for the set overload time. Reset it by clicking "Enable".

5.1.3 Overvoltage and undervoltage protection

The system will make undervoltage protection when the power supply voltage is lower than the set undervoltage protection value. After the voltage recovers, the fault automatically disappears;

The system will make undervoltage protection when the power supply voltage is higher than the set undervoltage protection value. After the voltage recovers, the fault automatically disappears;

5.2 Communication faults information table(same as indicator state)

Fault bit	Definition	Cause of issue	Recovery mode
Bit0	Enable, Disable	0- Enable 1- Disable	
Bit1	Over voltage	Input voltage is higher than 32V	self-reset
		(configurable)	
Bit2	Hardware over current	Over current protection, it is caused by	Power off and reset
	protection	motor Instantaneous maximum current,	

		short circuit or field tube damage	
Bit3	EEPROM error	Enter the Flash configuration program,	Power off and reset
		please power off and restart the motor	
		driver after the configuration.	
Bit4	Less voltage	Input voltage is lower than 7V	Disabling reset
		(Configurable)	
Bit5	Reserved	Reserved	
Bit6	Over current protection (the	The phase current reaches the software	Disabling reset
	protection value in software)	setting protection value and stop output.	
Bit7	Control mode failure	Control mode selection error	Power off and reset
Bit8	Phase failure	The motor's phase cable disconnected,	Power off and reset
		or the voltage between the motor and the	
		driver doesn't match with each other	
Bit9	Stall protection	The actual speed exceeds 25% of the set	Disabling reset
		value;	
Bit10	Temperature alarm	The driver stops output when the	self-reset
		temperature is above 85°C	
Bit11	Hall failure	Motor Hall is off or faulty	Disabling reset
Bit12	Current sensor failure	The internal current sensor is faulty	Power off and reset
Bit13	Spare	Spare	
Bit14	CAN disconnected	Under CAN mode, no CAN signal input	Enable reset
Bit15	RS232 disconnected	Under RS232 mode, no 232 signal input	Enable reset

VI. CANopen User Manual

6.1. Introduction to Communication Protocols

CANopen is one of the most famous and successful open fieldbus standards, which has been widely recognized and widely used in Europe and the United States. In 1992, CiA (CANinAutomation) was established in Germany and began to develop CANopen, an application layer protocol of automatic CAN. Since then, members of the Association have developed a series of CANopen products, which are widely used in machinery manufacturing, pharmaceutical, food processing and other fields.

DAS series servos are standard CAN slave devices, strictly follow CANopen2.0A/B protocol, and any host computer supporting this protocol CAN communicate with them. DAS series servos use a strictly defined list of objects, called the object dictionary. This object dictionary is designed based on the CANopen international standard, and all objects have clear functional definitions. Some Objects, such as speed and position, can be modified by the external controller, while some Objects can only be modified by the drive itself, such as state and error messages. These objects are hexadecimal numbers. For example, the CANopen address in working mode is 0x60400010, as shown in Table 1-1.

Complete	e CANopen ad	ddress composition				
Index	Sub-index	Bits (data length)	Attribute	Meaning		
0x6040	00	0x10	RW	Device state control byte		
0x6060	00	0x08	RW	Operating modes		
0x6041	00	0x10	MW	Device state byte		

Objects have the following attributes:

- (1) RW (read and write): Objects can be read or written;
- (2) RO (read only): An object can only be read;
- (3) WO (write only): Can only be written;
- (4) M (mappable): Object mappable, similar to indirection;
- (5) S (storable): Objects can be stored in the Flash-ROM area and will not be lost during power failure.

6.2. Hardware Description

CAN communication protocol mainly describes the way of information transfer between devices. The definition of CAN layer is consistent with the OSI model of open system interconnection. Each layer communicates with the same layer on another device. The specification of CAN defines the lowest two layers of the model, the data link layer and the physical layer. There are no strict regulations on the physical layer of CAN bus, which CAN use a variety of physical media, such as twisted pair fiber, etc. The most commonly used is the twisted pair signal, which is transmitted by differential voltage (common bus transceiver). The two signal lines are called CAN H and CAN L, which are both about 2.5V at static state, and the state is represented as logic 1. CAN H is higher than CAN L to represent the logic 0, which is called the explicit position. At this time, the voltage value is usually CAN H=3.5V and CAN L=1.5V, and the explicit position takes precedence in competition.

Caution

- The CAN L and CAN H pins of all slave stations CAN be directly connected, using serial connection mode, not star-shaped connection mode;
- The master station and the last slave station need to be connected to a terminal resistor of 120 ohm, the driver is external, not internal.
- Table 1-2 lists the maximum distance that each baud rate can communicate with.

Speed of communication (bit/s)	Braking distance (m)
1M	25
500K	100
250K	250

Table 1-2 Maximum distance of each baud rate for communication

125K	500
50K	600

6.3 Software Description

6.3.1 EDS Description

EDS (electronic data sheet) file is the identification file or similar code of the slave station connected to PLC, through which to identify the type of the slave station (is 401, 402, 403 similar, or belongs to the 402 of the device). This file contains all the information of the slave station, such as the manufacturer, serial number, software version, supported baud rate types, the OD that can be mapped and the attributes of each OD, etc., similar to the GSD file of Profibus. Therefore, before hardware configuration, we first need to import the EDS file from the station into the upper configuration software (please contact the business personnel when purchasing the EDS file).

6.3.2 SDO Description

SDO is mainly used to transfer low-priority objects between devices. Typically, it is used to configure and manage slave devices, such as modifying PID parameters of current loop, speed loop, position loop, PDO configuration parameters, etc. Such data transmission is the same as MODBUS, that is, after the master station sends data, the slave station needs to return data response. This communication mode is only suitable for parameter setting, not suitable for data transmission which requires high real-time performance. The communication mode of SDO is divided into upload and download. The upper computer can read and write the OD inside the servo according to the special SDO read and write instruction.

In CANopen protocol, the contents of the Object dictionary can be modified through Service Data Object (SDO). The following describes the structure of the SDO command and the guidelines it follows. The basic structure of SDO is as follows: Client→Server/Server→Client

lalaus 46 aus					Data				
Identifier	DLC	0	1	2	3	4	5	6	7
0x600+Node_ID 8		Send command byte	Obje	ct index	Object sub-index	N	lax 4-b	yte da	ta

Data transmission format

Data return format

Identifier	DLC		Data						
		0	3	4	5	6	7		
0x580+Node_ID	8	Receive command byte	Object index Object		Object sub-index		0		

Caution:

When the SDO message reads node parameters, the command word is 0x40.

If the received data is 1 byte, the received command word is 0x4F. If the received data is 2 bytes, the received command word is 0x4B. If the received data is 4 bytes, the received command word is 0x43. If there is an error in receiving data, the command word is 0x80.

Read node command Data_0	Data_1.2	Data_3	Data_4	Data_5	Data_6	Data_7
0x40	Indexes	Sub index	00	00	00	00

Send SDO packets when modifying parameters

Identifier	DLC	Data							
		0 1 2 3 4 5 6							7
0x600+Node_ID	8	Send command byte	Object index		Object sub index		Max 4	1 bytes	

Receive SDO when changing parameters

Identifier					Data				
lacitation		0	1	2	3	4	5	6	7
0x580+Node_ID	8	Receive command byte Object index Object sub index 0					0		

Caution:

If the data to be sent is 1 byte while writing node parameter , the command word is 0x2F. If the data to be sent is two bytes, the command word is 0x2B. If the data to be sent is 4 bytes, the command word is 0x23. The SDO message is successfully sent, and the received command word is 0x60. If sending SDO packet fails, the received command word is 0x80.

For multi-byte indexes and data, low bytes are always be in front.

Write byte	Data 1.2	Data 3	Data 4	Data 5	Data 6	Data 7
command Data_0	Data_1.2	Data_5	Dala_4	Dala_5	Dala_0	Dala_r
0x2F	Indexes	Sub index	XX	00	00	00
0x2B	Indexes	Sub index	хх	хх	00	00
0x27	Indexes	Sub index	хх	хх	хх	00
0x23	Indexes	Sub index	ХХ	ХХ	XX	ХХ

6.3.3 PDO Description

PDO can transmit up to 8 bytes of data at a time, with no other protocol Settings (meaning the data content is predefined), and is mainly used to transmit data that needs to be exchanged at high frequencies. PDO transport broke the existing data transmission and concept, adopts new data exchange mode, both sides before transmission equipment in each area, sending and receiving equipment defined data in the data exchange direct send the data related to each other's data reception area, reduce the time of the question-and-answer inquiries, so as to greatly improve the efficiency of bus communication, This results in extremely high bus utilization.

6.3.3.1 PDO COB-ID Description

Cob-id is a unique mode of CANopen Communication Protocol. Its full name is Communication Object Identifier - Communication Object ID. These COB-IDS define the corresponding transport levels for PDO. The controller and the servo can define the same transmission level and its transmission content in their own software configuration, so that the controller and the servo adopt the same transmission level and transmission content, the data transmission is transparent, that is, both sides know the data content to be transmitted. Therefore, there is no need for the other party to reply whether the data is successfully transmitted when transmitting data.

The Default ID Allocation Table is based on the 11-bit CAN-ID defined by CANopen 2.0A (CANopen 2.0B Protocol COB-ID is 29 bits), including a 4-bit function code part and a 7-bit node-ID part, as shown in Figure 8-13.

Figure 11-2 Default ID Description

Caution

Node-ID — The node-ID ranges from 1 to 127.

Function Code — Data transmission function code, defines transmission levels of various PDO, SDO, and management packets. A smaller function code has a higher priority.

Table 11-4 CANopen Pre-defined Master/Slave Connector Set CAN Identifier Assignment Table

Object	COB-ID
NMT Module Control	000H
SYNC	080H
TIME SSTAMP	100H
Object	COB-ID
Urgent	081H-0FFH
PDO1(send)	181H-1FFH
PDO1(receive)	201H-27FH
PDO2(send)	281H-2FFH
PDO2(receive)	301H-37FH
PDO3(receive)	381H-3FFH
PDO3(receive)	401H-47FH
PDO4(send)	481H-4FFH
PDO4(receive)	501H-57FH
SDO (send/server)	581H-5FFH
SDO (receive/client)	601H-67FH
NMT Error Control	701H-77FH

6.3.3.2 COB-ID

Sending PDO as opposed to servo refers to the data sent by the servo, which is received by the PLC. Sending the function code of PDO (COB-ID) is:

- 1. 0x180+servo station number
- 2. 0x280+servo station number
- 3. 0x380+servo station number
- 4. 0x480+servo station number

Relative to servo, receiving PDO refers to the data received by the servo, which is sent by PLC and sends the function code of PDO (COB-ID) is:

- 1. 0x200+servo station number
- 2. 0x300+servo station number
- 3. 0x400+servo station number
- 4. 0x500+servo station number

6.3.3.3 Type of PDO Transmission

PDO has two modes of transmission:

SYNC -- Transmission triggered by synchronous messages (transmission type: 0-240)

In this transmission mode, the controller must have the ability to send synchronous messages (messages with a frequency of up to 1KHZ). The servo sends synchronous messages after receiving them.

Aperiodic - transport is pre-triggered by remote frames or by object specific events specified in the device sub-protocol. In this mode, the servo drive sends the data in the PDO once it receives a synchronous message.

Cycle - Delivery is triggered every 1 to 240 SYNC messages. In this mode, the data in the PDO is sent once every n synchronization packets received by the servo drive. Asynchronous (Transfer type: 254/255)

The secondary station sends packets after they are changed, regardless of whether the primary station asks for them or not. In addition, the interval between sending the same packet can be defined to prevent packets of high priority from occupying the bus all the time. (The lower the PDO value is, the higher the priority is.)

DAS series servo drivers support asynchronous transmission mode.

Caution

A PDO can specify a stop time, that is, define the minimum interval between two consecutive PDOS to avoid the problem that the data volume of high-priority information is so large that it always occupies the bus, and other low-priority data cannot compete with the bus. Disallow time from 16 bits without character

The integer is defined in 1ms.

6.3.3.4 Protection mode/Supervision type

The Supervision Type refers to the inspection mode selected by the master station to check the slave station during operation. Through these two ways to judge whether the slave station is faulty, slave station will be processed according to the faults.

1.The heartbeat packets

The secondary site periodically sends packets to the primary site according to Heartbeat Packet Generation Time. If the primary site does not receive the next heartbeat packet from the secondary site after a certain period (set on the primary site), the primary site fails to judge the secondary site.

Packet format -- (0x700+ Node NUMBER) + state

State -- 0: start, 4: stop, 5: running, 127: pre-operation

2. Node protection

The master station periodically sends packets to the slave station by monitoring time. If the slave station does not receive any node packets from the master station after the monitoring time * life factor expires, the slave station alarms!

Format of the primary site request packet --

(0x700+ Node ID) (No data is contained in this

packet) Format of the secondary site response

packet -- (0x700+ Node ID) + state:

State -- The data portion includes a trigger bit (bit7) that must be alternately 0 or 1 in each node protection response. The trigger bit is set to 0 on the first node protection request. Bits 0 to 6 (bit0 \sim 6) indicate node state. 0: initialization, 1: link down, 2: link up, 3: operation,

4: stop, 5: running, 127: pre-operation.

Standard CAN slave stations generally support only one node protection mode. DAS series servo drivers use heartbeat message detection.

6.3.3.5 Startup Process description

CANopen supports both extended boot-up and minimal boot-up during network initialization. This initialization process can be represented by a node state transition diagram, as shown in Figure 11-3

Figure 11-3 Node state conversion diagram

Table 11-5 CANopen network state

Code	Meaning			
а	NMT			
b	Node Guard			
С	SDO			
d	Emergency			
e	PDO			
F	Boot-up			

Managing message Formats

COB-ID	DLC	Byte0	Byte1
0x000	02	CS	Station number

When node-id =0, all NMT slave devices are addressed. CS is a command word. Table 1-11 lists its values.

Command	NMT Service
0x01	Start the node to start PDO transmission
0x02	Shut down the node and shut down the PDO transmission
0x80	The system enters the pre-operation state
0x81	Reset the node
0x82	Reset the communication

Table 11-6 Table of CS values

6.4. Object Dictionary Description

The CANopen dictionary shown in this section is subject to change. CANopen EDS files can be contacted by business people.

The object dictionary in the following table maps the EDS file of the DUAL-drive standard DAS series. It also contains runtime queries and runtime instructions.

Note: Motor B parameter is meaningless when using single channel driver!

COB-ID	Indexes	Sub	Parameter	Access	Data type	Variant name	Remark
		index	name	attributes			
			Type of				
	0x1000	0	device	RO	Uint32	Func.obj1000	
	0x1001	0	Error register	RO	Uint8	Func.obj1001	
			Predefined			Func.highestSubInd	
	0x1003	0	error area	RW	Uint8	ex_obj1003	
		1		RO	Uint32	Func.obj1003[0]	
		2		RO	Uint32	Func.obj1003[1]	
		3		RO	Uint32	Func.obj1003[2]	
		4		RO	Uint32	Func.obj1003[3]	
			Synchronizati				
	0x1005	0	on frame ID	RW	Uint32	SYNC COB-ID	
			Hardware				
	0x1009	0	version	RO	Uint16	Func.obj1009	
			Firmware				
	0x100A	0	version	RO	Uint16	Func.obj100A	
			Urgent				
	0x1014	0	COB-ID	RW	Uint32	Emergency COB ID	
			Heartbeat				
	0x1017	0	time	RWS	Uint32	Func.obj1014	
			Slave Station			Func.highestSubInd	
			SDO			ex_obj1200	
	0x1200	0	Parameters	RO	Uint8		
0x600 +						COB_ID_Client_to_	
Node ID			Slave Station			Server_Receive_SD	
			Receiving ID	RO	Uint64	0	
0x580+_						COB_ID_Server_to_	
Node ID			Slave Station			Client_Transmit_SD	
			Sending ID	RO	Uint64	0	

6.4.1 RPDO Parameters

COB-ID	Indexe s	Sub index	Parameter Name	Access attributes	Data type	Remark
0v600±id	0x1400	0	PPDO1 Paramotora	PO	Llint9	Number of
0x000+iu	021400	0	RFDOT Farameters	RU	UIIIto	Entries
		1	COB-ID	RW	Uint32	0x200 + id
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0
		4	Compatibility (Reserved)	RW	Uint8	
		5	Processing Time	RWS	Uint16	1000
						Number of
	0x1401		RPDO2 Parameters	RO	Uint8	Entries
		1	COB-ID	RW	Uint32	0x300 + id
		2	Type of Transmission RWS Uint8		Uint8	255
		3	Suspension Time RWS Uint16		Uint16	0
		4	High compatibility RW Uint8		Uint8	
		5	Processing Time	Processing Time RWS Uint16		1000
						Number of
	0x1402	0	RPDO3 Parameters	RO	Uint8	Entries
		1	COB-ID	RW	Uint32	0x400 + id
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0
			Compatibility			
		4	(Reserved) RW Uint8		Uint8	1000
		5	Processing Time RWS Uint16		1000	
						Number of
	0x1403		RPDO4 Parameters	RO	Uint8	Entries
		1	COB-ID	RW	Uint32	0x500 + id
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0

		Compatibility			
	4	(Reserved)	RW	Uint8	
	5	Processing Time	RWS	Uint16	1000

6.4.2 RPDO Mapping (factory setting)

COB-ID	Indexes	Sub index	Parameter Name	Access attributes	Data type	Remark
0x200 + id	0x1600	0	Number of Objects for RPDO1 Mapping	RW	Uint8	
		1	Map the first object	RWS	Uint32	607A(A enabled)
		2	Map the second object	RWS	Uint32	6081(A data)
		3	Map the third object	RWS	Uint32	
		4	Map the fourth object	RWS	Uint32	
0x300 + id	0x1601	0	Number of RPDO2 Mapped Object	RW	Uint8	
		1	Map the first object	RWS	Uint32	6083(B enabled)
		2	Map the second object	RWS	Uint32	6084(B data)
		3	Map the third object	RWS	Uint32	
		4	Map the fourth object	RWS	Uint32	
0x400 + id	0x1602	0	RPDO3 Mapping	RW	Uint8	
		1	Map the first object	RWS	Uint32	
		2	Map the second object	RWS	Uint32	
		3	Map the third object	RWS	Uint32	
		4	Map the fourth object	RWS	Uint32	
0x500 + id	0x1603	0	Number of RPDO4 Mapped Objects	RW	Uint8	
		1	Map the first object	RWS	Uint32	
		2	Map the second object	RWS	Uint32	
		3	Map the third object	RWS	Uint32	
		4	Map the fourth object	RWS	Uint32	

6.4.3 TRDO Parameters

COB-ID	Indexes	Subinde x	Parameter Name	Data/read & write	Data type	Remark
0x180+id	0x1800	0	TPDO1 Parameters	RO	Uint8	Number of Entries
		1	COB-ID	RW	Uint32	180 + Nodes
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0
		4	Compatibility (Reserved)	RW	Uint8	
		5	Processing Time	RWS	Uint16	1000
0x280+id	0x1801		TPDO2 Parameters	RO	Uint8	Number of Entries
		1	COB-ID	RW	Uint32	280 + Nodes
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0
		4	Compatibility (Reserved)	RW	Uint8	
		5	Processing Time	RWS	Uint16	1011
0x380+id	0x1802	0	TPDO3 Parameters	RO	Uint8	Number of Entries
		1	COB-ID	RW	Uint32	380 + Nodes
		2	Type of Transmission	RWS	Uint8	255
		3	Disallow Time	RWS	Uint16	0
		4	Compatibility (Reserved)	RW	Uint8	
		5	Processing Time	RWS	Uint16	#1022
0x480+id	0x1803		TPDO4 Parameters	RO	Uint8	Number of Entries
		1	COB-ID	RW	Uint32	
		2	Type of Transmission	RWS	Uint8	
		3	Disallow Time	RWS	Uint16	
		4	Compatibility (Reserved)	RW	Uint8	
		5	Processing Time	RWS	Uint16	

6.4.4 TPDO Mapping

COB-ID	Indexes	Sub index	Parameter Name	Data/read & write	Data type	Remark
	0x1A00	0	TPDO1 Mapping	RW	Uint8	
		1	Map the first object	RWS	Int16	2012(Rotation speed A)
		2	Map the second object	RWS	Int16	2010(Current A)
		3	Map the third object	RWS	Int32	2016(Position A)
		4	Map the fourth object	RWS		
	0x1A01	0	TPDO2 Mapping	RW	Uint8	
		1	Map the first object	RWS	Int32	2022(Rotation speed B)
		2	Map the second object	RWS	Int8	2020(Current B)
		3	Map the third object	RWS	Int32	2026(Position B)
		4	Map the fourth object	RWS	Uint32	
	0x1A02	0	TPDO3 Mapping	RW	Uint8	
		1	Map the first object	RWS	Uint16	2011(Fault A)
		2	Map the second object	RWS	Uint16	2021(Fault B)
		3	Map the third object	RWS	Uint16	2013(voltage)
		4	Map the fourth object	RWS	Uint16	203C(temperat ure)
	0x1A03	0	TPDO4 Mapping	RW	Uint8	
		1	Map the first object	RWS	Uint32	2003(control state). See <u>P49</u> for more details
		2	Map the second object	RWS	Uint32	2004(control state)
		3	Map the third object	RWS	Uint32	
		4	Map the fourth object	RWS	Uint32	

6.4.5 Function Code

	Indexe s	Sub index	Parameter Name	Access attributes	Data type	Variant name	Remark
Monitored parameters:							
	0x2000	0	Substation node number	RO	Uint16	Func.Monitor.Sla venodes	
Motor A							
	0x2003	0	Motor A—control state	RO	Uint16	InStateGroup1	
	0x2010	0	Motor A—current effective value	RO	Uint16	MotorA_Current	А
	0x2011	0	Motor A—fault state bit	RO	Uint16	MotorA_Close	
	0x2012	0	Motor A—rotation speed	RO	int16	MotorA_Speed	rpm
	0x2013	0	A Driver DC bus voltage	RO	Uint16	MotorA_Voltage	V
None	0x2014	0	Motor A——Temp	RO	Uint16	MotorA_Temp	°C
	0x2015	0	Motor A——mechanical angle	RO	Uint16	MotorA_QepRew Teta	0-9999
	0x2016	0	Motor A——Position feedback	RO	int32	MotorA_Position	10,000
	0x2017	0	Motor A——electrical angle	RO	Uint16	MotorA_ElecThet a	Internal paramete rs
Motor B							
	0x2004	0	Motor B—control state	RO	Uint16	OutStateGroup1	
	0x2020	0	Motor B——current effective value	RO	Uint16	MotorB_Current	Unit A
	0x2021	0	Motor B——Fault state bit	RO	Uint16	MotorB_Close	Bit
	0x2022	0	Motor B——Speed	RO	int16	MotorB_Speed	rpm
	0x2023	0	B Driver DC bus voltage	RO	Uint16	MotorB_Voltage	V
None	0x2024	0	Motor B——Temp	RO	Uint16	MotorB_Temp	°C
	0x2025	0	Motor B——mechanical angle	RO	Uint16	Motor B_QepRewTeta	0-9999
	0x2026	0	Motor B—Position feedback	RO	int32	Motor B_Position	10,000
	0x2027	0	<u>Motor</u> B—Electrical angle	RO	Uint16	MotorB_ElecThet a	Internal paramete rs

6.4.6 System Code

	Indexes	Sub index	Parameter Name	Access attributes	Data type	Variant name	Remark
Control data							
	0x607A		Enable Motor A Maintain control mode	RW	Uint32	Enable motor-A	0x030D2001(enabled) 0x030C2001(disabled)
	0x607A		Motor A Speed mode is enabled	RW	Uint32	Enable motor-A	0x030D2011(enabled) 0x030C2001(disabled)
	0x607A		Motor A absolute position mode is enabled	RW	Uint32	Enable motor-A	0x030D2031(enabled) 0x030C2001(disabled)
	0x607A		The relative position mode of motor A is enabled	RW	Uint32	Enable motor-A	0x030D2041(enabled) 0x030C2001(disabled)
	0x6081		Motor A action data	RW	int32	The data of motor-A	-10000~10000
	0x6099	01	Motor A speed limit (position mode)	RW	Uint32	Homing speed	0~10000
Syste m param eters							
	0x203A		Control working condition	RO	Uint16	MotorState	
	0x203B		System failure state	RO	Uint16	MotorClose	Merging two-way faults
	0x203C		Driver temperature	RO	Uint16	Driver_Temp	
	0x203D		Driver software version	RO	int32	MotorVersion	

6.5 SDO Use Instruction

A enabled	0x030D2001	51191809(decimal)
A disabled	0x030C2001	51126273(decimal)
B enabled	0x030D2002	51191810(decimal)
B disabled	0x030C2002	51126274(decimal)

SDO test Driver ID: 2

CANopen initiated: ID 0000 01 02

Motor A enabled

 Send: 0x602
 23 7A 60 00 01 20 0D 03
 (0x030D2001, lower first, higher next)

 Feedback: 0x582
 60 7A 60 00 00 00 00 00
 00

Motor A disabled

Send: 0x602 23 7A 60 00 01 20 0C 03 (0x030C2001, lower first, higher next) Feedback: 0x582 60 7A 60 00 00 00 00 00

Motor A speed 50%

Send: 0x602 23 81 60 00 88 13 00 00 (5000=0x1388, lower first, higher next) Feedback: 0x582 60 81 60 00 00 00 00 00

Index of motor running status:

Temperature: 0x203C Bus voltage: 0x2013 (lower first, higher next)

(Motor A: Speed 0x2012 Phase current 0x2010 Encoder count value (position) 0x2016 Fault

0x2011)

(Motor B: Speed 0x2022 Phase current 0x2020 Encoder count value (position) 0x2026 Fault 0x2021)

Read motor speed:

Send: 0x602 40 12 20 00 00 00 00 00

Feedback: 0x582 4B 12 20 00 96 00 00 00 (0x96 motor speed 150RPM)

Read driver temperature: Send: 0x602 40 3C 20 00 00 00 00 00 Feedback: 0x582 4B 3C 20 00 21 00 00 00 (0x21 controller temperature 33°C)

Read driver bus voltage:

 Send: 0x602
 40 13 20 00 00 00 00 00 00

 Feedback: 0x582
 4B 13 20 00 30 00 00 00 (0x30 driver input voltage 48V)

Read encoder count value (position):

Send: 0x602 40 16 20 00 00 00 00 00 00

Feedback: 0x582 43 16 20 00 F1 D2 48 00 (0x0048D2F1 encoder count value 4772593)

Parsing: 0x0048D2F1 Encoder count value 4772593 (Int32, count from zero again after exceeding the range)

Note: The return value is in hexadecimal, and after converting to decimal, it is the pulse count value

after the frequency multiplication of the actual encoder by 4.

(10000 (encoder resolution * 4 frequency multiplier) = 1circle)

Fault query:

Send: 0x602 40 11 20 00 00 00 00 00 00

Feedback: 0x582 4B 11 20 00 01 08 00 00

Note: The returned data is in hexadecimal except for the error code and should be converted into binary for reading.

Error Code Fault Analysis:

Convert it into binary, and then count from right to left which number 1 is in, which corresponds to the fault corresponding to the number of flashes of the status indicator light.

Example: The feedback data is: 4B 11 20 00 01 08 00 00

Channel A failure: 08 01 converted to binary: 10000000001

The fault of channel A is: 1 12 (disabled, Hall fault)

Note: When using CAN transceiver to send single frame data, the speed instruction must be sent within 1000ms after sending enable instruction; otherwise, the driver judges that CAN communication is off line for automatic protection and needs to send enable instruction again after protection to start.

The following figure shows a test data format using a CAN transceiver

T	名称 2	发送方式	帧ID(Hex)	帧格式	較类型	数据(Hex)	每次帧数
	Ī	王常发送	0000	标准帧	数据帧	01 01	1
	ī	王常发送	601	标准帧	数据帧	23 7A 60 00 01 20 0D 03	1
	Ĩ	王常发送	601	标准帧	数据帧	23 81 60 00 18 03 00 00	1 '

VII PDO Usage examples

PDO Test Drive ID: 1

CANopen on: ID 0000 01 00

CANopen off: ID 0000 02 00

RPDO1: motor control command

• Motor A enable:

ID 0x201 01 20 0D 03 00 00 00 (0x030D2001, lower first, higher next)

• Motor A is disabled:

ID 0x201 01 20 0C 03 00 00 00 00 (0x030C2001, lower first, higher next)

• Motor A action data 10%:

ID 0x201 00 00 00 00 E8 03 00 00 (1000=0x03E8)

Speed value: 0x03E8=1000;

Target speed: 10% of the rated speed set by the driver, ten-thousandth ratio (1000/10000)

• Motor A enabled + speed 10%:

ID 0x201 01 20 0D 03 E8 03 00 00 (0x030D2001 enable + 0x03E8 speed 10%)

• Motor A forced position return to zero:

ID 0x201 00 00 0D 03 00 00 00 00 (0x030D0000)

Use SDO to set the mapping between TPDO and RPDO:

Set before CANopen is started, ID is 600+ID

- 1. T/RPDO mapping needs to add DLC after the sub-index (0x0010 two bytes or 0x0020 four bytes);
- 2. T/RPDO is not required;
- 3. All the low positions are in front and the high positions are next;

Example:

• Set the first object mapped by TPDO1 to 2012 (A speed)

Send: 0x601 23 00 1A 01 10 00 12 20

Feedback: 0x581 60 00 1A 01 00 00 00 00

index 0x1A00, sub-index 0x01,

Mapping object: speed 0x2012, 0x0010, data length 16 bits

Set the second object mapped by TPDO1 to 2010 (A current)
Send: 0x601 23 00 1A 02 10 00 10 20
Feedback: 0x581 60 00 1A 02 00 00 00 00
index 0x1A00, sub-index 0x02,
Mapping object: current 0x2010, 0x0010, data length 16 bits;

Set the third object mapped by TPDO1 to 2016 (position A)
 Send: 0x601 23 00 1A 03 20 00 16 20
 Feedback: 0x581 60 00 1A 03 00 00 00 00
 Index 0x1A00, sub-index 0x03,
 Mapping object: position 0x2016, 0x0020, data length 32 bits;

Set the third object mapped by TPDO3 to the temperature of the drive 0x2013 (voltage)
 Send: 0x601 23 02 1A 03 10 00 13 20
 Feedback: 0x581 60 02 1A 03 00 00 00 00
 index 0x1A02, sub-index 0x03,

Mapping object: temperature 0x2013, 0x0010, data length 16 bits;

 Set the fourth object mapped by TPDO3 to the temperature of the drive 0x203C (temperature)

Send: 0x601 23 02 1A 04 10 00 3C 20

Feedback: 0x581 60 02 1A 04 00 00 00 00

index 0x1A02, sub-index 0x04,

Mapping object: temperature 0x203C, 0x0010, data length 16 bits;

 Set the feedback time of TPDO: (TPDO1:0x1800, TPDO2:0x1801, TPDO3:0x1802, TPDO4:0x1803)

Example: TPDO1

Send: 0x601 2B 00 18 05 E8 03 00 00

Feedback: 0x581 60 00 18 05 00 00 00 00

index 0x1800, sub-index 0x05,

Feedback time: 1000ms, 0x03E8 (lower first, higher next);

RPDO mapping object; (RPDO1: 0x1600, RPDO2: 0x1601) Example:

• Set the first object of RPDO1 mapping to (A enable)

Send: 0x601 23 00 16 01 20 00 7A 60

Feedback: 0x581 23 00 16 01 20 00 00 00

index 0x1A02, sub-index 0x04,

Mapping object: enable 0x607A, 0x0020, data length 32 bits;

Set the second object of RPDO1 mapping to (A action data)
 Send: 0x601 23 00 16 02 20 00 81 60
 Feedback: 0x581 23 00 16 02 20 00 00 00

index 0x1A02, sub-index 0x04,

Mapping object: temperature 0x6081, 0x0020, data length 32 bits;

The driver maps the data uploaded by TPDO by default (1000ms):

(0x281 is B motor data, same format as 0x181 A motor data)

TPDO1 upload data: 0x181 DC 05 01 00 92 99 2A 01
 8-bit hexadecimal
 0x05DC: The current motor speed is 1500RPM
 0x01: current motor current 1A
 0x012A9992: current running position 19569042

• TPDO2 upload data: 0x281 is motor B data, the same format as 0x181 motor A data.

• TPDO3 upload data: 0x381 01 08 01 00 30 00 1E 00

8-bit hexadecimal

0x0801: Current A fault (disabled + Hall fault) 0x0001: Current B fault (disabled)

0x0030: The current bus voltage is 48V 0x001E: The current drive temperature is 30°C

• TPDO4 upload data: 0x481 14 51 14 51

4 digits hexadecimal

0x5114: The current control status feedback channel A is enabled;

Control status feedback:

A - 2003; B - 2004; Bit 2 (Channel A 1 is enabled; Channel A 0 is disabled.) Bit 3 (Channel B 1 is enabled. Channel B 0 is disabled) Add TPDO4: feedback two data: Channel A status and Channel B status (same now, for independent parameter setting)

看(V) 編辑(E) 帮助(H) Route B Ro 10100010100 100 00000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 0000 0000 00000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0001 0100 1100 01 15 0 0 0 0 0 01 15 Mod A MC MR Ms M+	计算	*							×
10100010100 1000010100 100 100 100	看(V)	 编辑(E)	帮助(H)				Ro	ite B	Rou
2010日 1000 10000 10000 10000 10000 10000 1000 1000 1000 47 20000 0000 0000 0000 0101 0001 0100 1100 31 〇十六进 Mod A MC MR MS M+ M-					1010	001	010	001	100
〇十六进 Mod A MC MR MS M+ M-		0000	0000						0000
	3000 53 3000 31	0000 0000	0000 0000	0000 0000	0000 47 0101 15	0000 0001	00 01	00 00	0000 32 1100 0
	0000 63 0000 31 0+7 0+7	0000 0000 (进: 世制 #制	0000 0000 Mod	0000 0000 A B	0000 47 0101 15 MC ←	0000 0001 MR CE	00 01 MS C	000 .00 M+ ±	0000 32 1100 0 M-